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ABSTRACT 

Computational astrophysics seeks to develop numerical 
models whidh help elucidate the nature of astronomical 
systems. Such models must not only adequately describe the 
underlying physics which give rise to phenomena that have 
been observed, but must also be predictive in asserting what 
future observations might unfold. Any model which is in 
conflict with physical observations, clearly, must be discarded 
or amended to reflect reality. As a computational modelling 
tool we find /tPL useful for testing astrophysical hypotheses, 
and extending the domain of our observationally based 
knowledge. Ltsing APL to build, test, and expand astrophysical 
models frees the investigator from the mechanical drudgery of 
computer programming, thereby allowing the researcher to 
concenuate on understanding the physical universe. 

As a quantitative example of how relatively complex 
astrophysical phenomena can be explored with ease using APL, 
we have developed a structure model for white dwarf stars. The 
model presented here considers such effects as Coulomb 
interactions between electrons and nucleons. inverse beta 
decays, and the effects of the general theory of relativity on the 
condition of hydrostatic equilibrium. This structure model is 
valid for zero-temperature stars of varying chemical 
compositions, ionic partitions, and central densities; and is 
applicable ovcx a wide range of partial and total degeneracy 
regimes. 

INTRODUCTION 

The quest for understanding the nature, history, and destiny of 
the physical entities which populate our universe defines the 
domain of the contemporary astronomer. Gone are the days 
when the lon,e astronomer would gaze into the heavens for 
hours on end, peering into a telescope and annotating his or 
her observations in a bound notebook. The whimsical notion 
that a telescope “is a long tube with a lens at one end, and an 
astronomer at the other” (Paul, 1966) has, unfortunately, faded 
into the historical past. An amendment to this notion, today, 
would replace the astronomer with an electrooptical detector, 
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invariably controlled and read out by computers. Despite 
popular stereotypes, and romantic notions about the 
stargazers, contemporary astronomers spend l-5% of their 
time tending telescopes, and 9599% of their time pushing 
pencils and pounding on keyboards. The ubiquitous computer 
has muscled into the astronomers realm and has become as, if 
not more, important an astronomical tool than the high 
quality eyepiece at the “astronomers’ end” of the proverbial 
telescope. Astronomers today compete not only for telescope 
time, but for computer resources as well, particularly as the 
power of the new generation of supercomputers becomes 
available through established research networks. Making 
optimal use of these computational resources has become 
paramount, which is where APL comes into the picture. 

An astronomer that one of us (GS) knows once had a sign on 
his office door which proclaimed “Today I am” followed by a 
tiltable arrow which pointed to “an astronomer”, or “a 
computer programmer”. The poor fellow would spend days 
wrestling with a computer, as he would code his way in LISP 
toward building a model to test a hypothesis which attempted 
to explain the physics behind some of his astronomical 
observations. This situation continues to exist within a large 
segment of the astronomical community, though you may fill 
in “FORTRAN”, “C”, etc., for your choice of linguistical 
barriers. Creating computer codes is not what astronomy or 
astrophysics should be about. Computers make wonderful 
potential resources, but the languages which we choose to 
make those computers do our bidding are the tools by which 
those potentials may become realized. Most computer 
languages abound in artificial syntactical, grammatical, and 
operational rules and constructs. This excess baggage serves 
only as an impediment to transforming the statement of a 
hypothesis in real, physical terms into a computer model 
which can be executed and tested. 

Employing APL, one can cut through the chaff and get to the 
meat of problem solving. Indeed, the notion that the mere 
expression of a problem (in APL notation) is its solution, may 
not be overstating the case. We have found, using APL, that 
the ability to move quickly and concisely to an executable 
model, once a physical hypothesis is sufficiently well formed, 
is accomplished to a degree far in excess of any other 
conventional computer language. We measure this degree of 
success not by evaluating the linguistical compactness, or 
even the executable efficiency of the software, but rather by 
the resulting scientific productivity. As a computational 
modelling tool, APL allows us to obtain results and reject or 
modify our original hypotheses with both ease and swiftness. 
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In this paper we will outline the development of an 
astrophysical model using APL. To illustrate the flexibility 
and lucidity of the notation, we attempted to identify those 
conditions which are often stated by APL opponents as being 
adverse to the creation of an APL model, and then fmding an 
astrophysically interesting situation for which those 
conditions applied. In essence, we looked for things which 
we, and others, have conjectured that APL does not handle 
well, and forced their incorporation into our model. 
Specifically, we demanded that the modeling of the physical 
process under evaluation must be fundamentally iterative in 
nature, forcing branching and re-execution of the linguistical 
constructs to be employed. Additionally, since APL naturally 
handles the manipulation of extensive multidimensional 
arrays with ease (Metzger, 1981), in an adverse test the data to 
be processed were to be of low rank (scalars, vectors, and 
matrices) containing, in general, very small numbers of 
elements. Since we were testing a numerical model, we felt 
that the process should inherently have been computationally 
extensive. Finally, for this illustrative example to be 
meaningful to a broad spectrum of potential readers, we wished 
to find a physical situation which was intrinsically 
interesting, and not too narrowly channeled. To the latter 
point, the techniques used in the model would have to be 
routinely used in diverse astronomical and physical 
disciplines. 

We felt that the classical problem of developing a stellar 
structure model for white dwarf stars fit all of the above 
criteria. The numerical integrations of the structure equations 
from the center of the star to the surface are inherently iterative 
and computationally intensive. Yet, the physical situation is 
parametrized by only a few variables, and the number of 
numerical elements involved in each iteration step is small. In 
developing the APL model, the method of approach to the 
solution is as important as, and indeed is part of, the solution 
itself. The actual “code” (a term we use hesitantly) is 
developed in a bottom-up fashion, following the structuring of 
the physical principles employed in the model. There is 
nothing unique, ground breaking, or particularly inventive in 
the implementation of the model which we present. The 
underlying physics is well understood. Indeed, this was an 
additional requirement we imposed upon ourselves in selecting 
a situation to model for illustrative purposes. 

STRUCTURE MODELS - GENERAL CONCEPTS 

For the purposes of developing a model of a stellar interior, 
the star may be thought of as being comprised of many 
infintesmally thin, spherically concentric shells. A structure 
model seeks to determine how the physical properties of the 
star change at varying depths within the interior. This 
amounts to determining the “run of physical variables” from 
the center of the star to the surface (or vice-versa), through 
each of the spherical shells. Some of the physical variables 
which are of interest include pressure and density at varying 
depths (i.e., within each shell), and the mass interior to each 
shell. 

The process of solving the interior model involves expressing 
the physical relationships between the structure variables as 
functions of the radial distance from the center of the star, and 
then determining the numerical values of each of those 
variables throughout the interior. The form of the classical 
differential equations of stellar structure, as described by 

Schwarzschild (1958), are discussed here as a background to 
developing the APL model which we will present. 

In the interior of a star two forces are in constant competition. 
The inward acting force of gravity, due to the star’s own mass, 
seeks to pull the outer layers of the star downward. The 
internal pressure of the gas, which comprises the stellar 
material, acts to check this gravitational collapse. For the 
vast majority of a star’s life these two forces are in balance and 
the star remains stable. This condition of hydrostatic 
equilibrium is expressed, for a region in the stellar interior, by 
equation [ 11. 

dPldr = -Gmrp ,/r* 111 

The pressure gradient (d Prldr ) across the region 

spherical shell) in hydrostatic equilibrium depends upon: 

r = the radial distance from the center of the star 

mr = the total mass interior to the region 

pr = the density of the region 

(i.e., 

The distribution of mass as a function of the radial distance 
from the center of the star is expressed by the equation of mass 
contirmity, written in differential form in equation [2]. As can 
be seen, the differential equations of hydrostatic equilibrium 
and mass continuity both require a knowledge of the density of 
the region before they can be integrated. 

dmjdr = 4m-* p, VI 

The gas pressure is related to the temperature and density 
through an equation of state. The form of the equation of state 
depends upon the underlying physics which governs the 
behavior of the gas. The “perfect gas law”, which most of us 
learned in high school chemistry, comes quite close to reality 
in physical situations of relatively low gas density, such as in 
the Earth’s atmosphere and for most of the interior regions of 
main sequence stars. The perfect gas law assumes that the 
collisional statistics between the particles in the gas are 
strictly Maxwellian; all collisions are perfectly elastic, and 
both external and inter-particle forces (such as Van der Walls 
forces) are ignored (Sears, 1952). Under higher gas density, as 
occur in the case of white dwarf stars, such simple assumptions’ 
will not suffice. 

The third equation which describes the structure of the stellar 
interior is the luminosity gradient equation, expressed in the 
most general form in equation [3]. This equation states that 
the radially directed luminosity gradient (i.e., the the net 
energy loss), across the region is exactly compensated for by 
the energy generated within the region. The energy generated 
per unit mass, E, must include all energy sources. For main 
sequence stars only nuclear energy sources are important, 
During the pre-main sequence phases of stellar evolution, 
when the star is undergoing gravitational contraction, both 
thermal and gravitational energy must also be considered. 

dLrldr = Edmjdr [31 

Equation [4], which has two forms, describes the radial 
temperature gradient (d Tr/d r ) across a spherical shell in the 

stellar interior. 

APL QUOTE QUAD Schneider, Paluui and Webb 



d Tidr = [-3KLrp/16nacr2 ~,3]~~~ PaI 

d T/dr = [ (1 -Y-l) (frlPJ dq/d rlconv [4bl 

The appropriate form of equation [4] to use in the.region 
depends upon whether the mode of energy transport is radiative 
or convective. To determine this, the convective form of [4] 
may be cast as an inequality (Chandrasekhar, 1967). If the 
region is to be stable against adiabatic convection, then the 
magnitude of the temperature gradient (d T,/di) must be less 
than the magnitude of adiabatic temperature gradient. Here, 

K = the opacity of the region 

a = the Stephan-Boltzman constant 
C = the speed of light 
y = the ratio of specific heats of the gas 

(513 for highly ionized gas) 

White dwarf stars are essentially isothermal. Since there is no 
physical mechanism for energy generation within the interior, 
the thermal energy containedthere is a remnant of the core 
collapse. This remnant thermal energy is bottled up within the 
star since white dwarfs have small surface areas (typically, less 
than 10e6 that of the sun). Additionally, a very thin radiative 
region must exist at the surface. At the interior/surface 
interface the temperature gradient is large, since the internal 
temperatures of newly formed white dwarfs are on the order of a 
few million degrees, while the surface temperatures are 
observed to be a few times lo4 K. Given a small thin radiative 
surface area, with a large temperature gradient, white dwarf 
stars have very long thermal cooling times. Therefore, except 
for this very thin region at the surface, the temperature 
gradient in the interior is essentially zero. For these reasons 
white dwarfs are considered thermally cold, and d Tr ldr in 
the interior is 0. 

As is apparent, the differential equations of stellar structure, 
[l] - [4], are ~nutually dependent and must be simultaneously 
integrated to determine the run of the physical variables. The 
boundary values for the integrations must come from an 
understanding of the physical properties at the stellar surface 
and/or center. 

Since both the luminosity and thermal gradients (equations [3] 
and [4]) are zero throughout the interiors of the white dwarfs, 
the physical characteristics of the interiors of these stars may 
be inferred only from the differential equations of hydrostatic 
equilibrium and mass continuity. Hence, we must 
simultaneously integrate only the first two of the four 
differential equations of stellar structure. 

THE CASE FOR WHITE DWARF STARS 

Several complications arise due to the high particle densities 
which occur in the interiors of white dwarfs. The gas does not 
behave in accordance with the “perfect gas law”, and indeed is 
degenerate. In a degent,ate gas both the momenta and the 

A star spends most of its life creating energy by nuclear fusion 
deep in its interior, converting Hydrogen to Helium through 
the “proton-proton” or “C-N-O” cycles. More massive, 
evolved stars may also fuse heavier elements, such as Helium 
into Carbon via the “triple alpha” process. In either case the 
energy generated in the core provides a sufficient radiant 
energy flow to support the weight of the outer lying layers, as 
expressed by the equation of hydrostatic equilibrium. At some 
point in the life cycle of a star, the available nuclear fuel in the 
core will be expended. The condition of hydrostatic 
equilibrium will be violated and the star will collapse under its 
own gravitational force. The final configuration which will be 
reached at the end of this rapid collapse depends upon the mass 
of the star. In any case the outer envelope of the star will be 
expelled (perhaps violently) or eventually depleted. The 
remnant stellar core, internally heated and compressed to very 
high densities by the stellar collapse, is all that will remain of 
what once was a main sequence star. The compressed core 
material, often nearly pure Carbon for stars of the appropriate 
initial mass, is crystalized during the collapse making some 
white dwarfs truly diamonds in the sky. 

positions of the particles are constrained. 

The Pauli exclusion principle dictates that no two electrons 
can have the same position, momentum and spin. The 
Heisenberg uncertainty principle states that one cannot, even 
in principle, determine the position and momentum of a 
particle simultaneously. The location of the particle may be 
described by its coordinates in a six dimensional phase space; 
the coordinates being the orthogonal components of the 
position and momentum vectors. This phase space, 
conceptually, is comprised of individual cells (whose sides 
represent conjugate variable pairs in position and momentum, 
and whose volume is h 3). As the gas density increases, the 
phase space cells begin to fill up, with the lowest momentum 
cells being occupied first. Since each cell can hold only two 
electrons, the distribution function becomes constrained, and 
is no longer Maxwellian. Such a gas is said to be partially 
degenerate. 

White dwarf stars have peculiar physical properties which in 
some ways greatly simplifies developing numerical models of 
their interiors, and in other ways complicates matters 
enormously. First, simplicity. 

In this case, the particle number density and pressure can be 
derived utilizing Fermi-Dirac statistics. The equation of state 
(for a given atomic species) may then be characterized by a 
single parameter representing the energy of the most energetic 
particle found in the Fermi-Dirac distribution. This parameter, 
X, is referred to as the “relativity parameter”, and is related to 
the particle momentum by the usual relativistic relation: 

White dwarfs represent the final stage of evolution for many 
stars. As nokd, at this phase in a star’s life nuclear energy 
generation processes in the interior have terminated, as the 
fusionable material has been exhausted. Further, the star is 
once again in hydrostatic equilibrium, so there is no thermal 
energy generation to speak of. Therefore, the luminosity 
gradient, expressed in equation [3] is 0, since E is 0. 

x = po/mc [51 

where p. is the particle momentum. 

The density is related to the relativity parameter, X, through 
equation [ 61. 

p = pMu(xmec/fi)3/37c2 [61 
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where, 

P = the ratio of atomic mass to nuclear charge 

MU = one atomic mass unit (i.e. 1.6604x10-% gm) 

C = the speed of light 

me = the mass of an electron 

When the phase space cells are completely filled the gas is said 
to be totally degenerate. At this point no additional particles 
can be added to the phase space without violating the Pauli 
exclusion principle. If the pressure exerted on the totally 
degenerate gas were to be increased further, say by the 
application of a stronger gravitational field, inverse P-decay 
would set in. In this process, an electron with “no place to go” 
(in phase space) would be driven into a proton and combine to 
form a neutron. This combination event is accompanied by a 
tremendous energy release, and, if unchecked in the core of a 
star, results in the onset of a supernova collapse. As we will 
see, this sets a limiting mass, the Chandrasekhar limit, for 
white dwarf stars. 

In the model we present here we.have chosen the equation of 
state (EOS) of a degenerate gas developed by Salpeter (1961, p. 
669). This EOS incorporates corrections for Coulomb 
interactions between nucleons and electrons, and both 
correlation and exchange energy terms. In addition, this EOS 
considers Thomas-Fermi excess charge distribution effects 
which become important at high densities where the process of 
inverse p-decay contributes to the ionic characteristics of the 
degenerate gas, as discussed by Hamada and Salpeter (1961. p. 
683). 

Another complication arises from the gravitational field of a 
white dwarf being so strong that the effects of the general 
theory of relativity (GTR) cannot be ignored. Here, we are not 
talking about a further modification of the equation of state, 
but rather to the structure equations themselves. For the case 
of hydrostatic equilibrium, Zeldovich and Novikov (1971) 
solved the metric for the gravitational field of a spherically 
symmetric star. By integrating the Einstein field equations, 
the GTR formulation of the hydrostatic equilibrium condition 
becomes: 

-G(pr+Pic2) (mr+4nPrr3/c2) 

dPrldr = 
r2( 1 -2Gmjrc2) 

[71 

The form of the equation of mass continuity, [2], remains 
unchanged in the GTR consideration. However, /?7, here is the 

total mass-energy of the interior region. At large radii, where 
the GTR effects are negligible, this reduces to the total stellar 
mass. We also note that here the radius, f, is that of an 
equivalent Newtonian sphere, as r, in principle, is 
unmeasurable under GTR. 

AN APL MODEL FOR WHITE DWARF STARS 

Armed with an understanding of the basic physics of white 
dwarf stars, we can now proceed to develop a numerical 
structure model using APL. 

The basic structure of the star is determined by the equations of 
mass continuity (equation [2]) and hydrostatic equilibrium 
under GTR (equation [7]). The APL function DES embodies 
these two differential equations of stellar structure, which must 
be simultaneously integrated to determine the nm of physical 
variables throughout the interior of the star. 

OD+DES P;S 
Cl1 0Relatiuistic Strut ture Equations 
C23 x+(PCll+u)*+3 0 Relativity Parameter 
C31 qcux(‘EOS z’NEWTON np,x,3LP)t3 FI Dens. 
t41 Dc4xo (ScPC23t2) xq FI Mass Continuity 
C51 r+(l+PC43+cxq,+04xPC2 31+.*3 1),+1-2x 

+/g,c ,PC3 23 
C61 D+D,-gxPC3l+Ssqxx/r ft HS Equilibrium 

v 

DES[2] and DES[3] compute the numerical values of the 
relativity parameter, X, and the paricle density, p (called q in 
DES), which are described by equations [5] and [6], 
respecitively. DES[4] is the differential of the equation of 
mass continuity. The three relativistic correction factors, 
embedded in equation [7], are computed as dimensionless 
quantities in DES[S] and stored in the vector, r. DES[6] 
expresses the GTR realization of the equation of hydrostatic 
equilibrium. Four parameters are passed to ‘DES as a four 
element vector. The elements of this argument, P, are: 

P[l] = the gas density at the lower boundary 

P[2] = the distance from the center of the star to the lower 
boundary 

P[3] = the total stellar maSs interior to the lower 
boundary 

P[4] = the gas pressure at the lower boundary 

The numerical evaluation of the mass continuity equation 
requires the determination of density of the degenerate gas at 
the point of evaluation. This density may be obtained by 
inverting the Hamada-Salpeter equation of state, described by 
the function EOS. 

OR+X EOS Z;P;AjWjBjE;LjT 
Cl1 Aiamada-Salpeter Equation of State 
C21 P+-5.4777336E20 1.50286882E18 

+.x(2X2 4+31x(X*4 5)+l,E+40X 
C 31 L+eB+X+E 
C41 A+( (B+.tS -5~1 13)+.+32 4)+(1,5xLt2) 

-0.5626+ (B- .t2 -2) x3+4+L 
C51 W+A-X+3+(1+X+E)x(+8+B-.t3 -5) 

+ CL+ .x3 -1,5+B,+B+Bt-31-+4+B-Bt-3 
C61 Tc8.3656909E20 2.6509094El7+.xW,Xt3 
C71 R+P+(6.0025406E22~(3~‘50X)+XxE 

x-3+2xX*2 1 -T 
0 

EOS determines the degenerate gas pressure as a function of the 
relativity parameter, X, for an atomic species of mass Z. EOS, 
however, is not analytically invertable. Therefore, a Newton- 
Raphson iteration scheme is employed to determine the gas 
density. 
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vD+A NEWTON P;T 
Cl3 nNewton-Raphson Inversion 
C21 A0:T+&‘PC41’ ,A 
C33 D~PC~I-(T-~~P)XPC~I+(+‘(+/P~~ 4l)‘,Al-T 
C41 +BxtPC23>IPC41-D 
C51 + (xPC33+PE31-ll~A0,PC4l+D 
C61 D+‘*:ttNO CONVERGENCE: ‘,TPC41-D 

0 

The Newton-Raphson inversion is performed by the APL 
function NEWTON. NEWTON is a general routine which may 
be used to munerically invert any equation expressed as a dyadic 
APL function. The left argument of NEWTON names the APL 
function to be inverted, and its invarient right argument 
(which could. be null), in this case ‘EOS z’. The right argument 
of NEWTON, P, is a four element vector defined as follows: 

P[l] = the value of the differential to be applied in 
computing numerical derivatives 

P[2] = the convergence criterion (numerical precision of 
the solution) 

P[3] = the maximum number of iterations before aborting 
t’he inversion due to non convergence 

P[4] = the value of the functional argument, (x), at the 
point of inversion 

The simultaneous integration of the structure equations, 
expressed in DES, is handled by the APL function RUNGKUT. 
As implied by the name, this is an implementation of a Runge- 
Kutta integration procedure. The algorithm employed for 
simultaneously integrating the two first order differential 
equations was described by Scarborough (1966). The left 
argument of IRUNGKUT is the size of the integration step. The 
right argument of RUNGKUT are the values of the physical 
variables (density, radius, interior mass, and pressure, 
respectively) at the lower boundary of the region to be 
integrated. 

OF+D RUNGKUT F;Kl;K2;K3;K4;A;r;q;x 
Cl1 RRunge-Kutta Integration 
C21 Ll :A+‘-4?,F 
t31 Kl+DxDES A 
C41 K2cDxDES A+0,0.5xD,Kl 
C51 K3+DxDES A+0,0.5xD,K2 
C61 K4+DxDES A+B,D,KB 
C71 A+A+(q-ltA),D,+6+1 2 2 1 

+.x4 2pKl,K2,K3,K4 
C81 F+F,Cllr,x,A 
c91 +LlxB^.JA 

v 

Normally, one is only interested in the final result of the 
integration process. However, the values of the physical 
variables determined at each integration step of RUNGKUT 
define the l?yered structure of the star. Therefore, RUNGKUT 
not only returns the values of the physical variables at the 
outer boundary of the integration, but the values at each 
integration step from the lower boundary outward as well. The 
outer boundary crossing is recognized when the computed value 
of any of the structure variables becomes negative (as 
determined in RUNGKUT[9]). Physically, this represents 
stepping out of the interior of the star, and exiting through the 

surface layer. Because of numerical roundoff error (eg., due to 
the expressed degree of precision in the inversion of EOS by 
NEWTON) the pressure and the density will not necessarily 
become negative at the same integration step. As will be seen, 
both the pressure and the density fall off asymptotically as the 
stellar surface is approached, so this numerical “fuzz” has little 
effect on the physical model. 

In addition to the structure variables, the relativity parameter, 
X, and the relativistic correction factors, r, computed by DES 
at each integration step are accumulated in RUNGKUT[8] and 
passed in the final result. RUNGKUT returns an eight column 
matrix, each row containing the values of X, r, p, , r, mr , 

and P,. 

The dyadic function WHITEDWARF controls the numerical 
modelling process. 

-R+E WHITEDWARF M;z;np;u;g;c;U 
Cl1 &tructure Model for White Dwarf Stars 
C21 cc8.98754E20 ~1 Speed of Light Squared 
C31 g+6.6732E-8 FI Gravitational Constant 
C41 z+l?M fi Species Atomic Mass 
t51 u+973800xMt31 ~1 Partition Function 
C61 np+lBb-6 -5 2 FI Conuergance, 0, riter 
C71 RBoundary conditions at center of star 
C81 U+-8?MC21,10,(oMC21~4000+3~ 

((CMC21%)*+3)EOS z)-og+200+3+MC2lt2 
C93 R+; 8p’J FI Strut ture Matrix 
ElBl&enter to Surface Integration 
CllILl:R+-1 0~R,tllMC41RUNGKUT 1 8&J 
Cl21 U+‘8t,-1 -4tR FI New Boundaries Values 
Cl31 +(E’MC4l+MC41+10)~Ll 

0 

The right argument, M, is a four element vector which 
completely parametrizes the model as indicated below. 

M[l] = z, 

M121 = pc. 

MI31 = PL, 

atomic species weight in atomic mass units 
central density in cgs units 

ionic partition function (atomic mass/nuclear 
charge) 

M[4] = Ar, initial value of integration step (dr) in cm. 

WHITEDWARF[2]-[6] establishes the values of physical 
constants used in the model, in cgs units, and sets up the 
parameters which control the NEWTON inversion routine (the 
vector np). These, and the value of z, are passed between the 
functions running under WHlTEDWARF as global variables. 

Before the numerical integration can begin, the boundary 
conditions must be established. The structure model is 
parametrized by pc, so the density at the center is given. The 

approximation can be made that the density at an infinitesimal 
distance, 5, from the center is the same as it is at the center. 

The boundary values for r are computed analytically in 
WHlTEDWARF[8], as the vector V. In this model we have 
fixed 5 to a value of 10 cm. The final result of the center-to- 
surface integration will be passed as the explicit resuh of 
WHlTEDWARF. WHlTEDWARF[9] establishes a matrix, R, to 
accumulate this result. 
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The Runge-Kutta integration is invoked by WHlTEDWARF[l l] 
using the established boundary values. On completion, 
RUNGKUT will pass the results of its integration from the 
lower boundary to the surface back to WHITEDWARF. The 
values in the last row of the matrix passed by RUNGKUT are 
meaningless, since this corresponds to some small distance 
outside of the stellar interior. Hence, this row is dropped by 
WHlTEDWARF[ 121. The structure matrix, then, runs from the 
lower boundary to as close to the surface as the integration 
step, Ar, allows without stepping out of the interior. This 
region, under the surface, can be taken as a new lower 
boundary, and the integration process may be iterated to get to 
as close to the surface as desired. WHITEDWARF[13] has been 
set up to decrease Ar by a factor of 10 when the Runge-Kutta 
integration is repetitively invoked to closely approach the 
surface. The left argument of WHITEDWARF, E, specifies the 
ending value of Ar , for terminating the white dwarf model. 

The APL realization of this physical model is short, concise, 
and easily understood. The question of what represents “good 
programming style” in APL has been discussed almost 
endlessly in the literature. The argument has been made that 
some APLers tend to “one-1inerize”. combining unrelated and 
disjointed thoughts into a single executable line for the sake 
of creating artificial brevity of expression. Sadly, this is true. 
Such practices have been perpetrated by well intentioned, but 
often unthinking APLers, in attempts to win over or impress 
those unacquainted with APL of its notative compactness. 
This invariably leads to slanderous, but not always undeserved 
comments about “those unreadable chicken scratches”, or the 
inevitable “looks like Greek to me” remarks. 

At the other extreme is the notion that APL statements must be 
broken down into short segments to enhance readability (APL 
Quote Quad, 1985). This typically involves the arbitrary 
inclusion of ultimately vestigial linguistic constructs which 
serve only to cloud the thoughts enveloped in the APL 
expression of the problem as discussed by Berry and Pesch 
(1986). “Enhancing” the readability of the code by 
incorporating unnecessary assignment statements and 
additional name references is akin to paying an author by the 
word rather than for his or her words. In the development of 
large software systems, it is not uncommon for progress to be 
measured by the number of lines of executable code. Do we 
really want this sort of outlandish situation in APL? 

As a tool of thought a computer language should not impose 
artificial linguistic or stylistic constraints on the thinker. The 
thought processes which are implicitly mapped into the code 
should not be obscured by “enhancement”, either by 
lengthening or shortening the notative representation of the 
problem at hand. We believe that as a case in point the white 
dwarf model presented here illustrates this, and the concept that 
“APL possesses certain important characteristics which speed 
development and assist thought” (Bemecky, 1986). 

In developing our APL model of white dwarf stars we made no 
effort to either “one-linerize”, or to break up logically 
connected thoughts to, as suggested by some, aid’ in the 
readability of the code. On the contrary, just as each function 
represents a modular piece of the solution, in a hierarchial 
sense, each function line represents a discrete “chunk” of 
thinking. 
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NUMERICAL RESULTS 

As with any numerical integration scheme, the precision of the 
solution depends upon the granularity of the integration step. 
We have found that WHITEDWARF will return meaningful 
results even with relatively coarse initial integration steps. 
As an example, Table 1 shows the actual results obtained from 
running WHITEDWARF with the input parameters indicated. 
Here, with 100 km (lE7 cm.) initial integration steps, the 
total stellar mass was found to be within 1% of the “true” 
value, as indicated by center-to-surface runs with integration 
steps 1000 times smaller. 

The Fist three terms in the table, RCl, RC2, and RC3 are the 
dimensionless values of the relativistic correction factors 
incorporated in the GTR equation of hydrostatic equilibrium 
(the vector, r, in DES[2]). As anticipated, all three converge to 
unity as the surface of the star is approached. Similarly, the 
relativity parameter, X, approaches zero near the surface where 
only mild partial degeneracy exists. An examination of the 
incrementing radius indicates that the surface boundary was 
first crossed between 1.1~10~ and 1.2~10~ cm. 
WHITEDWARF[3] then reduced the size of the integration step 
by a factor of 10 (to lo6 cm.) and re-entered the Runge-Kutta 
integration from the subsurface region. The surface boundary 
was again crossed between 1.30x10* and 1.31~10~ cm. 
WHITEDWARF then terminated since the last value of Ar was 
the same as the terminal value specified by the left argument. 

Table 1. 
Sample Run: 1 E6 WHITEDWARF 12 1 El0 2 1 E7 

EcLIGLluzLxormP 
O.OOEOO O.OOEOl O.OOEOl 0.00 l.OElO l.OOEl 4.19E13 1.04E26 
1.00101 1.00274 1.00047 17.25 6.77E9 l.OOE7 3SlE31 6.71E27 
1.00097 1.00223 1.00194 15.15 5.97E9 2.00E7 2.54E32 6.04E27 
1.00066 1 .00174 1.00346 14.53 4.16E9 3.00E7 6.79E32 3.44E27 
1.00072 1 .00116 1.00456 12.69 2.50E9 4.00E7 1.20E33 1.69E27 
1.00059 1.00073 1.00514 10.67 1.36E9 5.00E7 1.66E33 7.57E26 
1.00047 1.00042 1.00525 6.67 6.95E6 6.00E7 2.07E33 3.17E26 
1.00036 1.00022 1.00506 7.09 3.42E6 7.00E7 2.35E33 1.26E26 
1.00026 1 .OOOl 1 1.00477 5.60 1.61 E6 6.OOE7 2.53E33 4.76E25 
1.00021 1.00005 1.00442 4.36 7.11 E7 9.00E7 2.65E33 1.67E25 
1 .00014 1.00002 1.00406 3.32 2.74E7 l.OOE6 2.71E33 5.23E24 
1.00006 1 .ooooo 1.00373 2.42 6.65E6 l.lOE6 2.74E33 1.37E24 

O.OOEOO O.OOEOl O.OOEOO 0.00 6.65E6 l.lOE8 2.74E33 1.37E24 
1.00010 1.00001 1.00368 1.51 1.27E7 l.llE6 2.74E33 1.17E24 
1 .OOOl 0 1 .OOOO 1 1.00365 1 .a7 1.13E7 1.12E6 2.74E33 9.67E23 
1.00009 1 .OOOOl 1.00362 1.60 l.OlE7 1.13E6 2.75E33 6.32E23 

1.00009 1.00001 1.00359 1.73 8.92E6 1.14E6 2.75E33 6.96E23 
1.00006 1 .OOOOO 1.00356 1.66 7.66E6 1.15E6 2.75E33 5.76E23 
1.00006 1.00000 1.00353 1.59 6.69E6 1.16E6 2.75E33 4.76E23 
1.00007 1 .ooooo 1.00350 1.52 6.00E6 1.17E6 2.75E33 3.69E23 
1.00007 1 .ooooo 1.00346 1.46 5.20E6 1.16E6 2.75E33 3.14E23 
1.00006 1 .OOOOO 1.00345 1.39 4.47E6 1.19EB 2.75E33 2.51 E23 
1.00006 1 .OOOOO 1.00342 1.32 3.61 E6 1.20E6 2.75E33 1.97E23 
1.00005 1 .OOOOO 1.00339 1.25 3.22E6 1.21E8 2.75E33 1.53E23 
1.00005 1 .ooooo 1.00337 1.16 2.68E6 1.22E8 2.76E33 1.16E23 
1.00004 1 .ooooo 1.00334 1.11 2.20E6 1.23E6 2.76E33 6.59E22 
1.00004 1 .ooooo 1.00331 1.04 1.78E6 1.24E6 2.76E33 6.16E22 
1.00003 1 .OOOOO 1.003?9 0.97 1.41 E6 1.25E6 2.76E33 4.29E22 
1.00003 1 .OOOOO 1.00326 0.90 1.08E6 1.26E6 2.76E33 2.63E22 
1.00002 1 .OOOOO 1.00323 0.62 7.94E5 1.27E6 2.76E33 1.75E22 
1.00002 1 .OOOOO 1.00321 0.74 5.53E5 1.26E6 2.76E33 9.66E21 

1.00001 1.00000 1.00318 0.66 3.50E.5 1.29E6 2.76E33 4.61 E21 
1 .OOOOl 1 .OOOOO 1.00316 0.56 1.85E5 1.30E6 2.76E33 1.61 E21 
1.00000 1.00000 1.00314 0.46 4.56E4 1.31 E6 2.76E33 4.08E20 

Schneider, Paluzzi and Webb 



By comparing models of white dwarfs of given compositions, 
one can try to predict how the interior structure and global 
properties of these stars vary as a function of the principle 
characterizing parameter - the central density, pc. The final 

results obtained for the integrated global structure of eleven 
Carbon white dwarfs (Z=lZ, l.t=2.00) of increasing central 
density are summarized in Table 2. This table gives the central 
density (pc)., total stellar mass (M) and radius (R) of each of the 

stars modeled. The first four columns are in cgs units, while 
the last two columns compare the computed masses and radii of 
the Carbon white dwarfs to that of the sun (Ma and R 0, 
respectively). Some rather interesting physical properties of 
these stars are predicted by these results. 

Table 2. 
Globall Properties of Carbon White Dwarfs 

log P, 4 Mx~O-~~ Rx~O-~ M/Ma 1 OOFVb 
________ __~.---____ ------------ ---------- ---------- ------------ 

7.0 8.:21E23 1.540 6.840 0.774 0.983 
7.3 2.:22E24 1.785 5.965 0.897 0.857 
8 .O 2. LOE25 2.253 4.223 1.132 0.607 
8.3 5.39E25 2.397 3.602 1.204 0.518 
9 .O 4:?5E26 2.613 2.421 1.313 0.348 
9.3 l.:20E27 2.665 2.022 1.339 0.290 

10.0 1.04E28 2.727 1.294 1.370 0.186 
10.3 2LiOE28 2.736 1.059 1.375 0.152 
11 .O 2.:24E29 2.733 0.652 1.374 0.094 
11.3 5.152E29 2.723 0.526 1.369 0.076 
12.0 482E30 2.682 0.315 1.348 0.045 

First, as can be seen, white dwarfs with higher central densities 
(and correspondingly higher central pressures) contain more 
mass up to a limit of log pc = 10.3. An increase in total mass 

with increasing central density seems almost obvious from 
physical arguments invoking mass continuity and hydrostatic 
equilibrium. What is interesting, however, is that the mass 
does not increase without bound as a function of pc, but 

approaches a maximum 2.74~10~~ grams and then begins to 
decrease. This critical mass, well known as the Chandrasekhar 
limit, represents the most massive configuration that a white 
dwarf can obtain before mechanical equilibrium begins to 
break down and inverse beta decay sets in. In this condition 
the gas throughout is completely degenerate. If additional 
mass were suddenly dumped onto the star, the white dwarf could 
implode forming a neutron star. Chandrasekhar originally 
predicted the limiting mass for a white dwarf to be 1.44 solar 
masses. This model predicts 1.38 solar masses as an upper 
limit. The difference arises when one considers both the 
effects of general relativity on the condition of hydrostatic 
equilibrium and the additional gas pressure terms accounted for 
in the Hamada-Salpeter equation of state.. 

Second, the radii of white dwarfs decrease with increasing 
central prelrsure, and correspondingly increasing central 
density. As illustrated in Figure 1, up to the turnover point of 
log p, = 10.3, white dwarfs of greater total mass become 

physically smaller! This obviously implies increase in the 
gas density (and pressure) throughout the interior. 
Theoretically, as the central density is increased, and as 
Chandraseklnar’s limit is approached, the radius of the star 

drops to zero. Clearly, a condition of instability resulting in a 
physical change in the overall configuration of the star would 
occur before such a singularity is reached. Indeed, this is 
precisely the condition which would ultimately lead to the 
catastrophic formation of a neutron star. 
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Figure 1. Mass/Radius Relation for Carbon 
White Dwarfs 

The interior structure of the star, as a function of the distance 
from the star’s center, may also be inferred from the 
WHITEDWARF model. For example, Figure 2 shows how the 
pressure in the interior drops off, from the center of the star to 
the surface, for Carbon white dwarfs of varying central 
densities. Both the pressure at a given radius and the radial 
distance from the center are normalized to the central pressure 
and radius at the surface, respectively. This allows for easily 
intercomparing the differences in structure, while recognizing 
that the actual dimensions of the physical variables change 
from star to star as reported in Table 2. As is apparent, the 
pressure gradient is more severe close to the center of those 
white dwarfs with greater central gas pressures (and 
correspondingly greater gas densities). 

-l 
l .e e.1 l .2 l .3 e-4 8.5 e.6 l .7 e.e ‘ .e 

FRACTIONAL RADIUS (r/R,) 

Figure 2. Pressure Gradient in Carbon White 
Dwarfs 

The distribution of mass in Carbon white dwarfs, as predicted 
in the WHITEDWARF model, is represented in a similar 
fashion in Figure 3. Here, the fractional mass, m,, is the 

fraction of the stars mass contained within the corresponding 
fractional radius. As is obvious from this figure white dwarf 
stars with higher central pressures are more centrally 
condensed. 
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Figure 3. Mass Distribution in Carbon White 
Dwarfs 

It is beyond the intended scope of this paper to consider the 
physical results in greater detail than we have discussed here. 
For example, we have elaborated on the interrelation of only a 
few of the structure parameters. Indeed, our principle intent 
was to demonstrate the utility of APL for moving rapidly and 
easily from the physical conception of a given problem to the 
actualization of a computational model. In particular, while we 
have only discussed the WHITEDWARF results for pure Carbon 
white dwarfs, the model inherently will work with other atomic 
species and ionic partitions. We invite the reader to use the 
model to build white dwarf stars of his or her l&in 

9 
(we offer as 

suggestions for individual exploration He4, Mg 4, Si2*. S32, 
and Fes6). 

WHITEDWARF serves as a useful tool in its own right in 
helping to come to an understanding of the structure of white 
dwarf stars. Yet, WHITEDWARF though rigorous in many 
ways is idealized in others. The model presented here does not 
consider such effects as stellar rotation, magnetic fields, mass 
accretion (in binary systems), and other complicating factors 
which one can posit. For example, in rotating stars one must 
consider how the angular momentum of the gas particles 
contributes to the physical stability of the system (Tassoul. 
1978). Since the angular velocity at a given radial distance 
from the center varies as the cosine of the latitudinal angle 
measured from the rotational equator, the problem becomes a 
two dimensional one. Simple spherical symmetry cannot, a 
priori, be assumed. Moving from a one dimensional model to 
a two dimensional one in APL is almost trivial; for as is well 
known, and accepted even by APL opponents, APL shines as 
an array processing language. We leave this for any interested 
parties “as an exercise for the reader”. 
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APL.68000~ (1986a,b) distributed by the Spencer 
Orginization. For those readers who have stayed with us to the 
bitter end we offer the follwing note of explanation: 

This paper was not about statement delimitation in APL.’ 

0 

‘We hope the title was not deceiving.’ 
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