# Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66

Stephanie R. Cortes<sup>\*</sup>, Michael R. Meyer<sup>\*</sup>, John M. Carpenter<sup>†</sup>, Ilaria Pascucci<sup>\*,\*\*</sup>, Glenn Schneider<sup>\*</sup>, Tony Wong<sup>‡</sup> and Dean C. Hines<sup>§</sup>

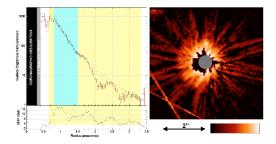
\*Steward Observatory, The University of Arizona, 933 N Cherry Ave., Tucson, AZ, 85721 †Department of Astronomy, California Institute of Technology, Pasadena, CA 91125

\*\*Department of Physics & Astronomy, Johns Hopkins University, 366 Bloomberg Center

<sup>\*</sup>Astronomy Department, University of Il linois, 1002 W. Green Street, Urbana, IL 61801

<sup>§</sup>Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301

**Abstract.** We present ATCA interferometric observations of the old (13 Myr), nearby (86 pc) classical T Tauri star (CTTs), PDS 66. Unresolved 3 and 12 mm continuum emission is detected towards PDS 66, and upper limits are derived for the 3 and 6 cm flux densities. The mm data show a spectral slope flatter than that expected for ISM-sized dust particles, which is most likely a result of grain growth. We also present *HST/NICMOS* 1.1 µm PSF-subtracted coronagraphic imaging observations of PDS 66. The *HST* observations reveal a circumstellar region of dust scattering ~0.32% of the central starlight, declining in surface brightness as  $r^{-4.53}$ . The disk is inclined  $32\pm5^{\circ}$  from face-on, and extends to a radius of 170 AU. These data are combined with published optical and longer- $\lambda$  observations (SEDs). By comparing the near-infrared emission to a simple model, we det ermine that the location of the inner disk radius is consistent with being at dust sublimation (~1400 K at 0.1 AU). We place constraints on the mass surface density of the disk at 5 AU assuming a flat-disk model and find that it is probably too low to form gas giant planets according to current models. Despite the fact that PDS 66 is much older than a typical classical T Tauri star ( $\leq 5$  Myr), its physical properties are not much different.


**Keywords:** Stars and Stellar Evolution, Milky Way Galaxy **PACS:** 97.10.Bt, 97.10.Gz

## **INTRODUCTION**

PDS 66 is a Classical T Tauri star (CTTs) in Lower Centaurus Crux, a subgroup of the Sco Cen OB association [3]. The median age for CTTs is 3 Myr, yet PDS 66 is still actively accreting at an age of 13 Myr [2]. Such an evolved star with a spectral energy distribution (SED) characteristic of an optically thick disk [4] makes an interesting laboratory for studying the structure. The near-infrared (NIR) provides information about the inner edge of the disk, the mid- to far-infrared emission is a probe of the flared geometry, the slope of the mm-spectrum is a diagnostic of the maximum grain size, and the disk mass can be constrained from the mm-fluxes.

CP1158, Exoplanets and Disks: Their Formation and Diversity, Proceedings of the International Conference, edited by T. Usuda, M. Ishii, and M. Tamura © 2009 American Institute of Physics 978-0-7354-0695-7/09/\$25.00

119



**FIGURE 1.** NIR-scattered light data at 1.1  $\mu$ m (*Right*), and surface brightness profile (*Left*). Reproduced by permission of the AAS

### **DISK PROPERTIES OF PDS 66**

We present NIR-scattered light data at 1.1  $\mu$ m obtained with Hubble Space Telescope's Near-Infrared Camera and Multi-object Spectrograph (*HST*/NICMOS). Figure 1 shows the plot of the surface brightness profile medianed over the disk, which is robustly detected out to a radius of 1.5" (130 AU). Lower surface brightness scattered light is detected out to 2" (170 AU). The right image of Figure 1 is the 7.5x7.5" field towards PDS 66. Based on the apparent major-to-minor axis ratio, we estimate an inclination of  $32\pm5^{\circ}$ . We estimate the 1.1  $\mu$ m flux density of the disk (from  $0.41 \le r \le 3.5$ ") as 2.7 $\pm 0.4$  mJy, scattering 0.32% of the starlight.

At long- $\lambda$ , the emission from a blackbody goes as  $v^2$ , and if the disk material is optically thin, the flux is also proportional to the mass opacity:  $\kappa_v \propto v^{\beta}$ . Therefore,  $F_v \propto v^{2+\beta}$ , and we can derive  $\beta$  directly from the observed slope. For grain sizes  $<<\lambda$  (ISM-like grains),  $\beta \sim 2$ ; and for grain sizes  $>>\lambda$  (blackbody),  $\beta \sim 0$ . We measure a slope of -2.4, so  $\beta$ =0.4, indicating grain growth from the initial ISM grains. If we correct for optically thick emission [1], using values for the temperature and density power-laws that maximize the correction, we require  $\beta_{corr} \leq 0.5$ . There was no detection at 3/6 cm, so we conclude that stellar winds are insignificant at these wavelengths.

For a more detailed description of our analysis and conclusions about the circumstellar disk around PDS 66, see our paper in *The* Astrophysical Journal.

#### ACKNOWLEDGMENTS

We thank the SOC and LOC for a wonderful conference, and putting together an interesting schedule. We were delighted to present our work at this conference.

#### REFERENCES

- 1. Beckwith, S. B. W., Sargent, A. I., Chini, R. S., & Gusten, R., 1990, AJ, 99, 924
- 2. Priebisch & Mamajek, 2008, arXiv0809.0407
- 3. Mamajek, E. E., Meyer, M. R., Liebert, J., 2002, AJ, 124, 1670
- 4. Silverstone, M., et al. 2006, ApJ, 639, 1138

120