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ABSTRACT

This paper presents data obtained during the NICMOS Guaranteed Time Observations of a portion
of the Hubble Deep Field. The data are in a catalog format similar to the publication of the original
WFPC2 Hubble Deep Field program (Williams et al.). The catalog contains 342 objects in a 4971 x 4874
subfield of the total observed field, 235 of which are considered coincident with objects in the WFPC2
catalog. The 3 o signal-to-noise ratio level is at an aperture AB magnitude of approximately 28.8 at 1.6
um. The catalog sources, listed in order of right ascension, are selected to satisfy a limiting signal-to-
noise ratio criterion of greater than or equal to 2.5. This introduces a few false detections into the
catalog, and users should take careful note of the completeness and reliability levels for the catalog dis-
cussed in §§ 9 and 10. The catalog also contains a test parameter indicating the results of half-catalog
tests and the degree of coincidence with the original WFPC2 catalog.
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1. INTRODUCTION

Deep observations with the Near-Infrared Camera and
Multi-Object Spectrometer (NICMOS), devoted to under-
standing the nature of galaxy formation and evolution
along with information on cosmological parameters, have
always been an important aspect of the NICMOS Instru-
ment Development Team (IDT) program since its inception
in 1984. After the WFPC2 Hubble Deep Field (HDF)
program in late 1995, it became obvious that observations
at longer wavelengths would greatly enhance the value of
the existing data in addition to satisfying the original intent
of deep observations. The smaller field of view of the
NICMOS instrument made it necessary to choose between
deep observations of a portion of the HDF and a survey of
the entire HDF at a brighter limiting magnitude. With the
advent of the HDF, there existed a large disparity between
the depth of the HDF and the depth of observations at
near-infrared wavelengths (Connolly et al. 1997). Since the
majority of objects that might be at redshifts unobservable
with WFPC2 were expected to be relatively faint, the IDT
decided to conduct a limited spatial survey to the faintest
possible magnitude. The results of a NICMOS General
Observer HDF survey program (Dickinson et al. 1997) will
provide coverage over the entire HDF.

The NICMOS HDF program consists of 127 orbits out
of a total of 553 orbits for the entire GTO program. Table 1
shows the distribution of orbits between the two filters and
two grisms. An additional two orbits were dedicated to
confirmation of guide star acquisition. Although the bulk of
the orbits are dedicated to imaging, the large comoving
volume for line observations available to the grisms is very
appealing. The small number of grism orbits shown in
Table 1 were intended as test cases to see if more GTO
orbits should be transferred to this program. In order to
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expedite the delivery of image data to the community at
large, we have not concentrated on the reduction of the
grism data, and it is not presented in this publication. The
grism data will be published in subsequent papers. As dis-
cussed below, the grism observations, however, significantly
influenced the choice of the field for NICMOS imaging
observations.

As with the Williams et al. (1996) paper, the purpose of
this publication is a presentation of the data and analysis
techniques rather than a discussion of the scientific content
of the data. Future papers will discuss several implications
of the new data. In the following we present the rationale for
the observation methods, the methods for image production
and source extraction, the catalog, and a discussion of the
quality of the data in terms of signal-to-noise ratio, com-
pleteness, and reliability. Note that all magnitudes quoted
in this paper are in the AB system.

2. FIELD SELECTION

The decision to devote part of the observational time to
grism observations limited field choices to regions of the
HDF that are not dominated by large bright foreground
galaxies. The slitless dispersed spectra of these galaxies
would overlap large areas of the field of view and reduce
the number of spectral observations of fainter galaxies.
Although some information on high-redshift objects was
available at the time of field selection, no effort was made to
bias the field position to include the largest number of high-
redshift sources.

The Space Telescope Science Institute decision to sched-
ule the NICMOS HDF observations during the Camera 3
campaign in January of 1998 determined the acceptable
range of roll orientations. This time period was not part of
the continuous viewing zone (CVZ) opportunity period;
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TABLE 1
Basic PARAMETERS OF THE NICMOS HUBBLE DEgp FIELD

RA. Decl. Orient Total Field F110W F160W G096 G141
(J2000.0) (J2000.0) (deg) (arcsec) (orbits) (orbits) (orbits) (orbits)
12 36 45.129 ...... +62 12 15.55 261.851 57.87 x 61.34 49 49 12 15

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes,

and arcseconds.

however, it did offer a larger fraction of truly dark observing
time. Given these constraints, a field located roughly at
the center of the WFPC2 chip 4 field offered the best ob-
servational opportunities. The J2000.0 center position is
12"36™455129, +62°12'15755. There is a relatively bright
star (ABy of approximately 22.1 mag) near the center that
provides an excellent fiducial location for the grism obser-
vations. The final orient of 2612851 is the result of fine
tuning to obtain the best possible guide star orientation.

3. FILTER AND CAMERA SELECTION

3.1. Camera Selection

All of the NICMOS HDF data in this paper are from
Camera 3. The wide field format of Camera 3 made it the
obvious choice for HDF observations. The campaign also
utilized Cameras 1 and 2 with the same integration param-
eters as Camera 3, but they were not in focus during oper-
ation. Parallel observation of these cameras with Camera 3
prevented the occurrence of the faint artifacts, termed bars,
which occur when the autoflush and imaging output timing
patterns overlap. Similar integration parameters for all
cameras prevents the parallel cameras from defaulting into
the autoflush pattern. The data from these cameras may be
useful for background characterization but are not
analyzed in this publication.

3.2. Filter Selection

The observations employed two imaging filters for
Camera 3, F110W and F160W centered at 1.1 and 1.6 ym,
respectively. By careful design, the F160W spans the lowest
background spectral region available to NICMOS. This is
the minimum between the scattered zodiacal emission that
decreases with wavelength and the thermal emission from
the warm Hubble Space Telescope (HST) mirrors that
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Fi1G. 1.—Normalized total filter response functions for the NICMOS
F160W and F110W filters. These response functions include all of the
color-dependent terms including the detector quantum efficiency.

increases with wavelength. Both of these emissions were
lower than expected prior to the HDF observations. The
second filter covers a shorter wavelength over a rather
broad bandwidth. This filter provides a second color
between the F814W WFPC2 filter and the NICMOS
F160W filter. The addition of this filter provides an impor-
tant discriminator between high-redshift star-forming gal-
axies, which will have blue infrared colors, and lower
redshift galaxies with large amounts of dust extinction,
which will have red infrared colors. Although very useful for
all objects, the extra filter is particularly important for
objects detected only in the NICMOS bands. Figure 1 dis-
plays the normalized detectivity for the NICMOS filters.
These plots include all of the color-dependent terms of the
detectivity, including the detector quantum efficiency. The
rapidly changing indices of refraction for most optical
coating materials in the 1 um region account for the compli-
cated shape of the F110W filter.

4. OBSERVATIONAL STRATEGY

The preflight decision to devote 49 orbits to each imaging
filter and 27 orbits to grism spectroscopy set the parameters
for the observing strategy. The 49 orbits are based on a
7 x 7 grid of positions, and the grism orbits employ three
different roll angle positions to help remove confusion from
overlapping spectra. There are three separate integrations
in each orbit to ensure that any problems encountered did
not necessarily compromise all of the data during the orbit.
Before the observations it appeared that the sky back-
ground would be the dominant noise source after about
900 s of integration. The lower than expected sky bright-
ness, however, reduced the sky noise below the read noise
for this integration time.

4.1. Detector Sampling Sequence

Since there are no bright sources in the HDF, the
logarithmic NICMOS sampling sequences, designed to
handle high dynamic range images, are inappropriate.
Those sequences add amplifier glow noise with several short
time integrations near the beginning of the exposures. Good
cosmic-ray rejection, on the other hand, requires a sufficient
number of samples to establish an accurate signal after any
cosmic-ray—affected samples are rejected. The HDF integra-
tions utilize the SPARS64 sampling sequence that has
evenly spaced 64 s sample times after the first three short
integration samples. The integrations have a NSAMP value
of 17, which produces a total integration time of 896 s.
Three of these integrations fill an orbit. The total number of
integrations in each filter is then 147 integrations of 896 s in
each filter for a total of 1.31712 x 10° s or 36.5 hr of observ-
ing time per filter.

4.2. Field Coverage

Several factors influenced the choice of field size. The
basic purpose of the NICMOS HDF program is deep
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observations. This requirement favors very small or no
dithers away from the field center. Accurate background
subtraction requires many offsets large enough to ensure
that most pixels have the majority of their observations off
of detectable objects. Spatial cosmic-ray rejection and
image resolution enhancement require at least 1 pixel and
fractional pixel offsets, respectively.

The pattern of observation positions on the sky is a com-
bination of a small three-point dither pattern during each
orbit and a larger 7 x 7 raster pattern that covered the 49
orbits. The dither pattern is a three-position spiral dither
with a step size of 07408, roughly 2 Camera 3 pixels. The x-
and y-spacings of the orbit-to-orbit raster are 07918 and
17523, respectively, which are 4.5 and 7.5 Camera 3 pixels.
The interorbit moves were accomplished with target offsets
from the original center position. The basic purpose of the
raster was to move the field of view sufficiently that any
single pixel had the majority of its integrations with no
observable source present.

4.3. Pointing Accuracy

Owing to the paucity of bright stars in the HDF region
and the roll constraints during the observational time
period, we were not able to utilize two FGS guide stars.
This situation led to the possibility of roll errors in position
about the location of the single guide star. Real time fre-
quent updates of the gyro bias levels by HST Missions
Operations Support Engineering Systems (MOSES) miti-
gated this problem. Data provided by the MOSES team
(C. Conner 1998, private communication from the Missions
Operations Support Engineering Systems) indicated that
the positional errors for all orbits used in this paper were
less than 0.2 NICMOS Camera 3 pixels. Subsequent
analysis discussed in § 5.3 confirmed this data. Our absolute
positions assume that the central star in our field (WFPC2
4-454) has the position stated in the published catalog
(Williams et al. 1996).

5. DATA REDUCTION

Data reduction procedures utilized the Interactive Data
Language (IDL) software environment for most of the basic
data analysis. KFOCAS (K. Adelberger & C. C. Steidel
1996, private communication to STScl), a derivative of
FOCAS (Jarvis & Tyson 1981; Valdes 1982) provided the
source detections listed in the catalog. In order to provide a
cross-check on the images and catalog presented in this
paper, we have deliberately reduced and analyzed the data
in two separate and independent ways. Specifically, in addi-
tion to the IDL and KFOCAS procedures, we utilized an
independent IRAF-based image processing algorithm and
an alternative source extraction program, SExtractor
(Bertin & Arnouts 1996). The IDL and KFOCAS reduction
procedures are described in detail as they produced the bulk
of the information on the sources listed in the catalog.
Descriptions of the IRAF and SExtractor reductions are
provided when they differ substantially from the IDL and
KFOCAS reductions.

5.1. IDL Image Reduction

Each 896 s SPARS64 integration produced an individual
image. A set of 55 SPARS64 dark integrations of the same
duration as the HDF exposures provided the required dark
frames for the analysis. These dark exposures occurred just
prior to and coincident with the HDF exposures. The data
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reduction procedures produce a completely processed
image for each integration. Section 5.3 describes the com-
bination of the images into the final mosaic.

5.1.1. Dark Frames

Dark frame reductions begin with the division of each 17
sample SPARS64 darks into 16 first differences. A first dif-
ference is simply the difference between a readout and the
previous readout. The first differences are then combined
via a sigma clipping mean to produce a final superframe
that is free of cosmic rays to the 3 ¢ level of the 55 combined
observations. Although for most observations a simple
median of first differences would suffice, observations at the
sensitivity level of the HDF required sigma clipped means
to avoid digitization noise. The average Camera 3 dark
current is 0.2 electrons s~ . In each 64 s first difference,
about 12.8 electrons accumulate. The detector gain for
Camera 3 is 6.5 electrons per ADU for an average of 2
ADUs per first difference. If medians are taken of these
observations, there would still be 50% noise even for an
infinite number of integrations. The first differences are then
recombined to produce a ramp dark for subtraction from
the imaging integrations. The ramp dark is a sequence of
summations ranging from just the initial first difference, the
initial and second first difference, to the total of all of the
first differences.

5.1.2. Image Frames

Analysis of the image integrations starts with the pro-
duction of a set of 16 ramp readouts for the 17 samples from
each SPARS64 integration. Subtraction of the superdark
ramp from each integration produces a set of dark current—
corrected but not sky-corrected integrations. A set of stan-
dard linearity corrections is next applied to pixels that have
exceeded the linear signal response region but have not
saturated. In practice only bad “hot” pixels receive a cor-
rection owing to the low signal levels in the HDF obser-
vations.

After correction for linearity, the integrations are cor-
rected for cosmic rays by fitting a linear function to the
ramp values. The slope of this function is the signal rate in
ADU per second. Cosmic rays produce an instantaneous
discontinuity in the signal function. Subtraction of the fitted
function from the signal produces an output that has a
distinctive S shape if a cosmic ray is present. In one readout
the difference between the fit and the signal transitions from
negative to positive. Detection of a transition greater than
expected from noise indicates the presence of a cosmic ray.
The offending first difference is then removed from the
ramp, and a new fit is calculated. The new fit is again
checked for cosmic rays, and detected cosmic rays are
removed in a similar matter. Any fits still beyond the
expected noise are declared bad and flagged as bad. If the
cosmic ray produces saturation, only the readouts before
saturation are used in the final fit. All detected cosmic rays
are recorded in the data-quality image extension. This pro-
cedure is unique to the NICMOS instrument on HST
owing to the ability to read out nondestructively the detec-
tor during the integration. Further cosmic-ray removal can
occur if necessary during the image mosaic construction in
the standard manner.

Before the flat field can be applied, all of the quadrant
biases in the individual images must be removed. If there is
a bias level in the image, the flat-field function will produce
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variations in the bias that will remain in the data. The
removal procedure can be iterative, but in practice one iter-
ation is sufficient. The first step produces a median of all of
the cosmic-ray—corrected images. This median is then sub-
tracted from each individual image. If there are no quadrant
biases, the median value in each detector quadrant should
be zero since the dark current and sky are removed by the
subtraction. The sources do not dominate the image, so
they contribute very little to the median. The second step
measures the median of each quadrant in each image and
records the value. The final step then subtracts these quad-
rant bias levels from each cosmic-ray—corrected image. The
flat-field correction was then applied to each image.

The bad pixels are marked from a bad pixel mask deter-
mined from the previous observing history with the
NICMOS Camera 3. The bad pixel mask contains both low
response pixels and hot pixels defined as pixels with an
excessive dark current. In each image the bad pixels were
replaced by the median of the total image. The drizzle
mosaic process does not use pixels marked as bad in the
final image construction.

The median of all of the final individual images deter-
mines the level of the sky emission. The raster and dither of
the large number of images reduces the source contribution
of the median to a value less than the expected noise level.
Inspection of the median image did not reveal any source
contributions. Subtraction of this sky level from each image
completes the analysis of the individual images. The median
sky level in the F160W filter is 0.55 electrons s~ !, which is
lower than the original estimates prior to the observations.
This is not surprising as one of the selection criteria for the
HDF was a low zodiacal background.

5.2. IRAF Image Reduction

For comparison with the IDL procedures, images were
reduced in an independent pipeline using NICRED 1.5
(McLeod 1997; Lehar et al. 1999) and modified IRAF
scripts developed to reduce Camera 3 images taken in
parallel mode (Yan et al. 1998). Two median sky-dark
frames were produced, one from the first exposure in each
orbit and one from combining the second and third expo-
sures in each orbit, to minimize the effect of any pedestal in
the first exposure. These were used as dark frames along
with the same flats utilized in the IDL reductions. These
flats, observed on 1997 December 23, are identical to the
flats used in the IDL reduction. The residual bias levels in
the individual quadrants were removed by fitting a Gauss-
ian to a histogram of the pixels in each quadran and sub-
tracting the peak value. A new bad pixel mask was created
from the exposures. The images were inspected, and any
remaining cosmic-ray hits or satellite trails were individ-
ually masked.

5.3. Mosaic Techniques

Both of the data reduction procedures utilize modified
versions of the drizzle software developed for the reduction
of the WFPC2 HDF images. The drizzled pixel size in each
case is ~0”1, one-half of the original NICMOS Camera 3
pixel size. The drizzle parameter PIXFRACT is 0.6 in the
drizzling of the IDL reductions, while it was set to 0.65 in
the drizzling of the IRAF results.

5.3.1. IDL Image Mosaic

The first task of mosaic production is an accurate deter-
mination of the relative offsets between the individual inte-
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grations. We compared offset information from the world
coordinates in the header files, shifts computed from the
IRAF/STSDAS Dither package, offsets from the IRAF
imcentroid package of five individual objects in the field,
and finally individual inspection via interactive IDL tools.
The NICMOS geometric distortions have been determined
to be negligible so no geometric distortion corrections were
made.

In general, the agreement among the four methods was
quite good. For the F160W images the discrepancy between
the world coordinate shifts and the IRAF-generated shifts
fell between —0.2 and 0.4 pixels in x with a mean of 0.15
(rms = 0.03) and a range of —0.5 to 0.2 pixels in y with a
mean of —0.15 (rms = 0.03). The internal difference
between the shifts determined by IRAF procedures aver-
aged —0.02 pixels.

For the F110W filter the difference between the world
coordinate shifts and those determined by IRAF procedures
varied from —2.0 to 0.7 pixels in x and —0.4 and 2.7 pixels
in y with means of 0.1 (rms = 0.14) and 0.7 (rms = 0.36),
respectively. The mean internal difference between the
IRAF procedures was —0.12 for x and 0.04 in y. The large
excursions of 2.0 and 2.7 pixels in x and y were seen in only
two images. The IRAF Dither and imcentroid positions
agreed to 0.1 pixels in these images. Visual inspection of the
images confirmed the IRAF positions. In both the F160W
and the F110W filters the rotation angle varied by less than
07005 owing to the excellent effort of the MOSES group in
limiting the roll during the single guide star observations.

The data were drizzled using Drizzle Version 1.2 Feb-
ruary, 1998 (Fruchter & Hook 1997) with image offsets
derived from the mean of the IRAF procedures since in
cases in which the IRAF positions differed from the world
coordinates, interactive inspection via the IDL tools con-
firmed the IRAF positions. As discussed above, no geomet-
ric distortion correction or image rotation was required.
High cosmic-ray persistence noise levels after transit of the
South Atlantic Anomaly (SAA) required removal of 28
F160W integrations and 36 F110W integrations from the
final mosaic image. A comparison of a straight combination
of the drizzled frames and a combination averaged with 3 o
clipping showed no differences, which indicates that the
IDL cosmic-ray removal techniques were effective.

5.3.2. IRAF Image Mosaic

The IRAF reduction images were drizzled (Drizzle
Version 1.1; Fruchter et al. 1997) with offsets determined
from the centroid of the central star (NICMOS 249) in each
frame. No rotation or geometric distortion corrections were
necessary. Owing to persistence of cosmic rays encountered
in SAA passages, 25 F160W images and 37 F110W images
were removed from the final mosaic. Which frames to
remove was determined independently by inspection, which
leads to the slight difference from the number not included
in the IDL image mosaic. The drizzled frames were aver-
aged with 3 ¢ clipping to remove any residual low-level
cosmic rays.

6. THE IMAGES

Figures 2 and 3 show the F110W and F160W images,
respectively, produced by the IDL image reduction and
drizzle procedures described in the preceding section. The
raster pattern of observations produces much lower signal-
to-noise ratio areas in the image at the edges at which the



No. 1, 1999

L

NICMOS OBSERVATIONS OF THE HDF 21

Fic. 2—F160W image

number of overlapping integrations are greatly reduced.
These areas are deleted from the image even though many
strong sources are evident in these regions. The area
covered by the images is a 49719 x 48753 (481 x 476 pixels)
rectangle. Figure 4 is a color composite of the two infrared
images and the F606W WFPC2 image. The WFPC2 image
has been rotated and resampled to fit the orientation and
pixel size of the NICMOS images. The red, green, and blue
colors represent the F160W, F110W, and F606W inten-
sities. As with the original WFPC2 color image, the stretch
and color curves have been manipulated to show faint
objects while preserving the detail of features in the brighter
objects. This image should not be used for quantitative pur-
poses. Figures 2 and 3 are also stretched to show the best
range of features. The very high dynamic range of the image
can not be displayed in a linear intensity image.

7. SOURCE DETECTION AND PHOTOMETRY

Since the original WFPC2 HDF catalog (Williams et al.
1996) utilized KFOCAS to generate its listings, our primary
catalog listings also utilize KFOCAS to provide consis-
tency. We also provide a description of the SExtractor
source extraction process. The main difference between
KFOCAS and FOCAS is the utilization of a supplemental
image by KFOCAS that specifies the relative detectivity at
each point in the image. This is important for the NICMOS
HDF images where there are significant variations of
quantum efficiency and total integration time over the
image area.

7.1. Estimation of the Input Sigma for KFOCAS
KFOCAS uses a constant 1 o level that is either deter-
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Fic. 3—F110W image

mined from the first few lines of the image or is input manu-
ally by the user. Since the first few lines of the NICMOS
image have much lower signal-to-noise ratio than rest of the
image, we estimated the 1 o value manually from a histo-
gram of the signal levels in all of the pixels. Figure 5 gives
the histogram of the pixel values in the two dithered images
shown in Figures 2 and 3. Only the pixels from the area
covered by the images are used in this histogram. The histo-
gram peaks at zero signal as expected for sky-subtracted
observations. The long extensions of the histograms toward
positive values owing to the sources in the field are cut off in
this figure. The flat-fielding process multiplies the true noise
value in the image by the value of the flat field. This process
raises the noise level in low quantum efficiency areas and
lowers it in high-efficiency areas. Since the median efficiency

of the area is set to 1, this process should not appreciably
alter the width of the curve.

As learned in the production of the WFPC2 images, the
drizzling process produces a correlated image and hence
correlated noise (Williams et al. 1996; A. Fruchter 1998,
private communication). There is approximately a factor of
2 reduction in the apparent noise as a result of the drizzle
process for a factor of 2 reduction in linear pixel size. The
numbers given in Figure 5 should therefore be multiplied by
a factor of 2 to determine the true 1 ¢ value of the noise.
This gives the noise figures of 1.22 x 10~ Jy for the F160W
filter and 1.54 x 10~° Jy for the F110W filter. These are the
powers that produce a signal equal to a 1 ¢ noise in a single
pixel. Use of these levels resulted in KFOCAS missing a
large number of real sources easily identified by eye. We
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Fi1G. 4—Composite color image

therefore dropped the 1 o estimates to a very low value of
55 % 1071% Jy or 2.0 x 10~* ADUs s~ ! for the F160W
filter and 3.5 x 107 ° Jy or 2.3 x 107* ADUs s~ for the
F110W filter. The number of ¢ for the detection limit was
then varied until all known real sources were detected
without excessive over selection. It is of course the product
of the chosen 1 ¢ noise level and the number of sigma for
detection parameter that determines the signal value a pixel
must have to be considered a potential source. A known
real source is an object easily seen by eye in the NICMOS
images that is exactly coincident with an observed source in
the WFPC2 HDF images. A more rigorous discussion of
the completeness and reliability of the selected sources
occurs in §§ 9 and 10. The catalog listings are limited to
sources with signal-to-noise ratios that exceed or equal 2.5.
This discards some sources that by many tests appear to be
real but eliminates a large number of sources that have a
significant chance of being false.

7.2. KFOCAS Reduction

We prepared the drizzled images for the KFOCAS pro-
cedure by multiplying the signal in ADUs s~ ! by 10° and
subtracting the minimum value, a negative number, from
the multiplied image. This produced an image that had no
negative values and in which all of the significant values
were well represented in the integer arithmetic used by
KFOCAS. The zero-point magnitudes of the modified
images are 35.3 for the F160W image and 35.186 for the
F110W image. The source extraction utilized the standard
KFOCAS procedures of the series KDETECT, KSKY,
KEVALUATE, KSPLIT, and RESOLUTION. Our driz-
zled pixels have 6.25 times the area of the WFPC2 drizzled
pixels; therefore, we set the minimum area for detection in
pixels to 2 in order to avoid missing very compact galaxies.
The parameters for the KFOCAS reduction are listed in
Table 2. The point-spread function (PSF) matrix for
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FiG. 5—Histograms of the pixel values in the F160W (left) and F110W (right) mosaic frames are shown. Gaussian fits are overplotted as dotted lines. The
measured 1 ¢ noise levels per pixel are 2.2 x 107+ ADUss ™! (6.1 x 107 1° Jy, 31.9 AB mag) for the F160W image and 2.5 x 10"* ADUss ! (7.7 x 107 1° Jy,
31.7 AB mag) for the F110W image. The true noise levels are about a factor of 2 higher than these values owing to the correlated noise produced in the

drizzling process.

smoothing the data is a 3 x 3 matrix that mimics the PSF
of the central star in the drizzled data. This is much more
sharply peaked than the Gaussian function used in the SEx-
tractor analysis.
7.2.1. Preparation of the Detectivity Image

Each pixel, pix; ;, in the final image has a quality Q, ;
value associated with it. The quality value is the square root
of the sum of the squares of the total efficiency of each pixel
in the individual image that contributes to the final image.
Owing to the raster and dither pattern, a pixel in the final
image has contributions from many different individual

image pixels.
Qi,j = ./ Z (eﬂk)z . (1)
k=1

Here n is the number of pixels contributing to the final
image pixel, pix; ;, and the efficiency eff, of each contrib-
uting pixel is measured by the inverse of its multiplicative
flat-field value. Figures 6 and 7 show the detectivity func-
tions over the image areas used in the catalog.

7.3. SExtractor Reduction

As a cross-check on the KFOCAS detections we utilized
an alternative source extraction system, SExtractor, on data

TABLE 2
KFOCAS PARAMETERS

KFOCAS Parameter F160W F110W
Magnitude zero point .............cceevennnn... 353 35.186
Catalog magnitude limit ....................... 100. 100.
Radius of fixed circular aperture .............. 6.0 6.0
Sigma of SKy ..oovveiiiiiiiii 20 22
Sigma above sky for detection................. 2.5 3.0
Sigma below sky for detection................. 20.0 20.0
Minimum area for detection................... 2 2
Significance for evaluation and splitting...... 0.15 0.15

reduced via the IRAF reduction procedure rather than the
IDL based procedure.

7.3.1. Galaxy Detection

We performed object detection on the F160W images
and photometry on the F160W and F110W images using
SExtractor version 2.0.7 (Bertin & Arnouts 1996). The final
F160W and F110W images reduced in the IRAF pipeline
showed low-frequency structure in the background in the
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Fi1G. 6—F160W source detectability contours for the region included
in the catalog. The contours inside the F160W area cover a factor of 3.77.
The contour levels are 5% of this range. The regions with the highest
detectivity are in the center and lower left.
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Fic. 7—F110W source detectability contours for the region included
in the catalog. The contours inside the F110W area cover a factor 4.75. The
contour levels are 5% of this range. The regions with the highest detectivity
are in the center and lower left.

X-direction. We created background frames in SExtractor
using a 64 x 32 mesh, which were subtracted from the
reduced frames, producing cosmetically more uniform
backgrounds. We measure 1 o noise levels from histograms
of all the pixels in the frames of 2.0 x 10~* ADUs s~ ! in the
F160W image and 2.4 x 10~* ADUs s~ ! in the F110W
frame, consistent with the values shown in Figure 5. The
amplitude of the fluctuations in the background varies by
up to 50% across the image owing to variations in the
quantum efficiency of the detector and the dither pattern
used. Thus we wused the option in SExtractor
(WEIGHT_TYPE) that accepts a user-supplied variance
map (for which we used the “detectivity” function
described in § 7.2.1). SExtractor robustly scales the weight
map to the appropriate absolute level by comparing the
weight map to an internal, low-resolution, absolute
variance map built from the science image itself. In contrast
to the KFOCAS source extraction, all object detection was
done on the F160W image, and magnitudes were measured
to the corresponding isophotes on the F110W image.

After experimenting with different values of SExtractor
parameters, we adopted the values given in Table 3. Aside
from the determination of the local variance itself, the
three most critical parameters that affect the detection of
very faint isolated sources are FILTER_NAME,
DETECT_MINAREA, and DETECT_THRESH. The
FILTER_NAME parameter describes the smoothing
kernel that is applied to the image, and for this a Gaussian
with a full width half-maximum of 2.0 (drizzled) pixels
was used over a 3 x 3 pixel grid. We tested various
combinations of DETECT_MINAREA, the minimum
number of contiguous pixels above a level that is the
product of the parameter DETECT _THRESH times the
local rms fluctuation in the background. Our final choices
for these parameters are DETECT_MINAREA = 2 pixels
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TABLE 3
SEXTRACTOR PARAMETERS

Parameter Value
DETECT_MINAREA ........ 2
DETECT_THRESH .......... 2.15
ANALYSIS_THRESH........ 2.15
FILTER NAME .............. gauss_2.0_3x3.conv
CLEAN.......covviiiiiiiinns N
MASK_TYPE ................. CORRECT
WEIGHT _TYPE .............. MAP_WEIGHT
PHOT_APERTURES ........ 6
GAIN ..o, 6.5
PIXEL_SCALE................ 0.1
SEEING_FWHM ............. 0.2
BACK SIZE ................... 64
BACK_FILTERSIZE......... 3
BACKPHOTO_TYPE ....... LOCAL
BACKPHOTO_THICK...... 24

MAG_ZEROPOINT .........
MAG_ZEROPOINT .........

22.80 (F160W)
22.68 (F110W)

and DETECT_THRESH = 2.15 ¢. This choice for
DETECT_MINAREA (the same value as for the equivalent
KFOCAS parameter) favors slightly the detection of the
most compact sources, and the final choice of 2.15
for DETECT THRESH was dictated by an attempt to
strike a judicious balance between completeness and reli-
ability. We tested an alternative set of parameters with
DETECT_MINAREA set to 3 pixels and with
DETECT_THRESH to a lower value in order to detect the
same number of sources as with DETECT_MINAREA =2
and DETECT_THRESH = 2.15. Estimating the number of
false detection rates and completeness as discussed in §§ 9
and 10, we found that these two sets of parameters behaved
very similarly. For the reason stated above, we selected
DETECT_MINAREA = 2. Sections 9 and 10 contain a
more quantitative discussion of the completeness and reli-
ability of the detected sources.

Although as with the KFOCAS reductions we have
deliberately erred on the side of extracting a fairly large
estimated fraction of false detections (at the faintest levels)
and a completeness level that is only of order 50%, the
catalog listings contain only sources with signal-to-noise
ratios greater than 2.5.

7.4. Comparison of the IDL-KFOCAS and the
IRAF-SExtractor Photometry

At this point our analysis contains four components, the
IDL and IRAF reduced images and the KFOCAS and
SExtractor source extractions and photometry. In the spirit
of independent cross-checks, it is useful to compare these
results and to see if any differences lie primarily in the
images or in the source extraction procedures. We will
discuss the differences in completeness and reliability
between the two methods after §§ 9 and 10. Data presented
so far have been for either the IDL-KFOCAS or IRAF-
SExtractor procedures. The third panel in Figure 8 shows a
comparison between the aperture magnitudes found by
KFOCAS in the IDL image and the aperture magnitudes
found by SExtractor in the IRAF images for all objects
detected in common. The delta magnitudes are KFOCAS
magnitude minus SExtractor magnitude. In both cases the
diameter of the aperture is 076.
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F16. 8.—Comparison of KFOCAS and SExtractor aperture magnitudes before the catalog cut at 2.4 ¢. The first panel shows the difference in SExtractor
magnitudes determined from the IDL and IRAF images. The second and third panels indicate the differences between the two source extraction programs,
KFOCAS and SExtractor. The last panel is a good guide in comparing the SExtractor determined magnitudes in the catalog with those determined by

KFOCAS

As expected, the correlation is very good at bright magni-
tudes and gets worse at the faint end. The SExtractor mag-
nitudes are equal to the KFOCAS magnitudes up until 28th
magnitude, where the SExtractor magnitudes become sig-
nificantly brighter than the KFOCAS magnitudes. These
differences could be due to differences either in the input
images or in the magnitudes extracted by KFOCAS and
SExtractor. To check this, we ran SExtractor on both the
IDL-reduced and the IRAF-reduced images. The first panel
in Figure 8 shows the result of this test, which shows a
uniform scatter about the zero level at the fainter magni-
tudes. The slight offset at the bright end is probably due to
the IRAF procedure IMCOMBINE clipping some pixels in
the brightest galaxies in the IRAF image. A follow-up test
comparing the KFOCAS reductions of the IDL image with
SExtractor reductions of the IDL images is shown in the
middle panel of Figure 8. This plot is essentially identical
to the last panel except for about a 0.07 mag offset at
the brighter end. This set of tests shows that the differ-
ences between the KFOCAS/IDL magnitudes and the
SExtractor/IRAF magnitudes shown in the last panel of
Figure 8 are entirely due to the differences between the
KFOCAS and SExtractor algorithms, not from any differ-
ences between the IDL and IRAF image production pro-
cedures. The origin of this difference is not clear, but the
reader should be aware that these two standard procedures
do produce differences at the very faintest levels.

8. THE CATALOG

Table 4 contains the catalog of sources from the
KFOCAS source extraction from the F160W and F110W
images. This catalog contains only sources with signal-to-
noise ratios greater than 2.5. We anticipate a future pub-
lication describing the sources with less reliable detections.
The catalog contains 342 objects, some of which are com-
ponents of a larger object. The catalog contains 235 objects
in common with the WFPC2 catalog. Two-hundred
twenty-one objects have detections in both filters, 56 objects
have a detection only in the F160W filter, 53 have a detec-
tion only in the F110W filter, and none have detections only
in SExtractor. The objects are arranged by right ascension,
which sometimes separates different components of the
same object in the catalog. The data and numbering in the
catalog have the priorities, in order, of F160W KFOCAS,
F110W KFOCAS, and SExtractor. This means that all

KFOCAS objects detected in both filters use the KFOCAS
F160W R.A,, decl, and x and y positions. The magnitudes
come from the KFOCAS F160W and F110W extractions.
Positional coincidence is relative to the F160W positions.
Objects that have F110W KFOCAS detections but not
KFOCAS F160W detections use the F110W KFOCAS
positions and magnitudes. The catalog columns contain the
following parameters.

ID.—This is a running number for each object. The
numbers after the decimal point indicate the level of split-
ting by KFOCAS up to three levels of daughter objects.
Since the list is arranged by right ascension, daughter
objects can appear separately from the parent objects. No
object is repeated. Numbers of 900 or higher are split
F110W objects that are not coincident with any F160W
split even though some of the components are in common.

WFPC.—The WFPC column lists the nearest WFPC2
source from the Williams et al. (1996) catalog. This is not
necessarily the same object, just the nearest.

s—The s-value is the separation in arcseconds between
the NICMOS and the nearest WFPC2 object as listed in
the WFPC column. A large value of separation indicates
that the NICMOS and WFPC2 object are probably not
associated.

x and y—These columns give the x- and y-values of the
centroid of the source in the F160W or F110W image. If the
object is detected in both images, the x- and y-values refer
to the F160W image. Objects detected only by SExtractor
have the values determined by SExtractor. This order of
precedence holds for all of the subsequent values.

R.A. and Decl—These columns give the right ascension
and declination of the centroid of the source. Only the
minutes and seconds are listed. The hour of right ascension
is 12" for all sources, and all sources have 62° of declination.
The source positions assume that the central star,
NICMOS 145, and the WFPC?2 object 4-454 have the same
position and that the measured plate scales of the NICMOS
Camera 3 are correct. In this sense all positions are relative
to the position of the WFPC2 4-454 object.

160> 160> A160> L1105 110> And a;1o.—These are the total,
isophotal, and aperture magnitudes found by KFOCAS in
the F160W and F110W images. The aperture diameter for
the aperture magnitudes is 076. The total and isophotal
magnitudes are as described in Williams et al. (1996). A
value of 99.99 indicates that the object was not detected in
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that filter. The F160W and F110W objects are considered
to be in common if they lie within 0?25 of each other. If the
last digit in the tests parameter (see below) is 3, the magni-
tudes are from the SExtractor procedure.

S/N.—The signal-to-noise ratio value quoted in the
catalog is calculated by the same technique used in the
optical HDF. The value of the signal-to-noise is S/N =
L;/o(L;), where the variance [T'a(L;)]? is

[To(L)]* = TNy + L9°T %63, Ay + 1.9°T %635, A2,/ Ag,,
(2)

as quoted in its correct form by Pozzetti et al. (1998). For
NICMOS, the value of I' in electrons per ADU is 6.5. L; is
the sky-subtracted number of counts, o, is the sky sigma
in ADUs, and the object and sky areas A, and 4,,; are the
areas in pixels returned by KFOCAS. This equation refor-
mulated in terms of count rates in ADUs s ! is given by

o.tzot = rateobj/(rt) + 1'92052kyrate Aobj + 1'920'52kyrate Agbj/Asky .
)

Here rate,,; is the sky-subtracted source count rate in
ADUS 8™, 0 yrare 1S the sky sigma valuein ADUs s ™', and ¢
is the integration time in seconds. The final signal-to-noise
ratio is rate,,;/o,,;. The measured value of the sky sigma is
2.2 x 10"+ ADUs s~ ! for the F160W image and 2.5 x 10~ #
for F110W as shown in Figure 2. The factor of 1.9 in each of
the equations is the estimated value of the noise correlation
discussed earlier. Figure 9 shows a plot of the signal-to-
noise ratios calculated by this method for the KFOCAS
determined sources.

A—This is the isophotal area of the source in square
arcseconds as determined from the value returned by
KFOCAS.

r,.—This is the half-light radius returned by KFOCAS.

Tests.—This parameter indicates which of the various
reliability tests the source passed. A source that passed all
tests has a value of 22111, one that passed no tests has a
value of 00000. The first number is 0, 1, or 2 if the source
was detected in none, one, or both of the F160W half-
catalogs. For an explanation of the half-catalogs see § 10.1.
The second number is the same test in the F110W catalog.
The third number is 0 or 1 depending on whether the source
was found in both NICMOS bands of the full image extrac-
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FiG. 9—Signal-to-noise ratios for faint sources relative to the
KFOCAS aperture magnitudes for the F160W and F110W filters. This
figure contains all of the extracted sources, not just the catalog sources.
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tions. The fourth number is 0 or 1 depending on whether
the source is detected in the WFPC2 catalog. The last
number is 0 or 1 depending on whether the source was
found in the independent Sextractor catalog. Note the dis-
cussions in §§ 10.2 and 10.3 on the differences in half-catalog
detection probabilities between KFOCAS and SExtractor.
In all cases a common detection means that the source
centroids lie within 0725 of each other. No color or mag-
nitude tests are applied as part of the common object
association.

9. COMPLETENESS

Our calculated 50% completeness levels are KFOCAS
AB aperture magnitudes of 28.7 and 28.2 for point objects
and extended sources in the F160W filter and KFOCAS AB
magnitudes of 28.6 and 28.0, respectively, in the F110W
filter. These limits are based on a technique of adding
sources to the image at various flux levels and running the
source extraction programs to see what percentage of the
added sources are recovered. These numbers are based on
the KFOCAS reductions.

9.1. KFOCAS Completeness

The test for the KFOCAS program established a regular
grid of 49 positions in a 7 x 7 pattern that evenly covered
the image area utilized in the catalog extraction. Sources are
placed at these positions to create a new image that con-
tains the original image plus the added sources. KFOCAS
then creates a new catalog utilizing exactly the same param-
eters used in the final catalog preparation. An automatic
program checks the new catalog to see what percentage of
the added sources are recovered by KFOCAS. The sources
are sequentially dimmed in half-magnitude steps from their
original magnitudes of about 21 to the final magnitude of
32. The added sources are real sources extracted from the
final image. The NICMOS source 145, the central star, rep-
resents a point object and the elliptical galaxy, NICMOS
212, is the extended object. These are WFPC2 sources 4-454
and 4-471, respectively. Alteration of the position of the grid
confirmed that the completeness limits were consistent at
different grid positions. The extended source completeness
limit will of course be brighter for more extended objects
than NICMOS 212, but this galaxy is one of the largest in
the image.

The completeness value at a given magnitude is for the
magnitude of the input source, not the magnitude at which
the source is recovered. This value is approximately equal
to the recovered magnitude for sources brighter than 26.5.
At the very faintest levels, the recovered magnitudes are
0.3-0.5 mag fainter than the input magnitudes. The mea-
sured completeness limits are fitted by

(1_’"‘"%)"\/@ @
m, — m, m

In this function m, is the magnitude at which the com-
pleteness goes to zero, m, is the magnitude at which the
completeness is 100%, and the power index n is adjusted to
fit the data. The function is purely empirical, simply
designed to fit the data well. This function smooths the
curves and provides the interpolation from the observed
magnitudes to the magnitudes used in Table 5. As expected
from the nonuniform quality map of the image, the com-
pleteness limit is not uniform over the image. The complete-
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ness is somewhat lower in the right-hand half of the image.
The completeness limits in Table 5 should be considered as
an average across the image.

9.2. SExtractor Completeness

For the SExtractor catalog we used an analysis similar to
the one described in Yan et al. (1998). We selected a
compact galaxy (4-289 in the Williams catalog), representa-
tive of the majority of the objects in our field, and dimmed it
in half-magnitude increments from 25.5 to 29. The dimmed
galaxy was dropped at random positions 10,000 times,
superposed on the full image and two images with half the
exposure time of the full image. (The “half-” images are
discussed in § 10.1.) We ran SExtractor at the position at
which the galaxy was dropped at each iteration to deter-
mine whether or not the dimmed galaxy was recovered and
at what magnitude. The use of random positions in the
simulations allows us to include completeness corrections
arising from nondetections and magnitude errors caused by
crowding and spatially dependent errors in the sky subtrac-
tion and flat-field correction. As discussed in § 9.1, the com-
pleteness values for recovery of the images are again an area
average of the completeness since the sensitivity across the
NICMOS images is not uniform. These same experiments
also give us the matrix relating the input and output aper-
ture magnitudes for those galaxies that are recovered. The
input magnitude and mean recovered magnitude agree to
within 0.07 mag in the bins through 28. At 28.5 the mean of
the recovered galaxy magnitudes begins to brighten (28.21),
and by an input magnitude of 29 it brightens substantially
(28.11). The galaxies that land on negative noise regions are
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lost completely. The SExtractor catalog becomes 50% com-
plete at AB ~ 28.3 for the compact galaxies in our survey.

To test differences in detectability of the point-spread
function due to the source landing at different locations
within the 072 pixels, we ran incompleteness tests using the
central star (NICMOS 145, AB = 22.1) taken from five dif-
ferent individual exposures, all taken at different dither
positions. These have only 1/120 the exposure time of the
final image and therefore have lower signal-to-noise ratios.
We found no substantial differences in detection rates, other
than as the star is dimmed to AB = 28, it is missed most
frequently in the upper right-hand quadrant of the detector,
the least sensitive region of the image. In the final combined
image, we found no obvious location dependence. We
detect the star 95% of the time as it is dimmed to AB = 27,
and then the detection rate drops rapidly to 50% complete
at AB = 28.5.

10. SOURCE RELIABILITY TESTS

Even though the listed catalog does not contain objects
with signal-to-noise ratios less than 2.5, there can be false
detection still in the catalog. As indicated in § 8, the catalog
indicates the degree of coincidence between the various sub-
catalogs that make up the total catalog. These data are
provided as an aid in discerning the reality of the sources.
Any statistical study of these results should utilize the test
flag indices of Table 4 carefully along with the completeness
and reliability results discussed here and in § 9 and sum-
marized in Table 5. See § 10.4 for a discussion of this table.
Table 6 presents a catalog of detected sources with signal-
to-noise ratios less than 2.5.

TABLE 5
COMPLETENESS AND RELIABILITY

KFOCAS SX
MAGNITUDE? S/N Csys Clig Csyy Cly, Ris Ry, Cis R, 15b Roeg16°
oy 2 (©) ) ®) (6) () ®) ) (10) (11)
20.000 ....... 283.8 100.0 100.0 100.0 100.0 1.000 1.000
20.500 ....... 2879 100.0 100.0 100.0 100.0 1.000 0.833
21.000 ....... 166.5 100.0 100.0 100.0 100.0 1.000 0.750
21.500 ....... 195.8 100.0 100.0 100.0 100.0 1.000 0.750
22.000 ....... 114.2 100.0 98.85 100.0 100.0 1.000 0.800
22.500 ....... 125.0 100.0 97.75 100.0 98.88 1.000 0.900
23.000 ....... 79.12 100.0 96.67 100.0 97.79 1.000 0.875
23.500 ....... 48.68 98.93 95.62 98.93 96.71 1.000 0.542
24.000 ....... 58.21 97.89 94.53 97.89 95.58 1.000 0916
24.500 ....... 28.31 96.87 93.35 96.87 94.28 1.000 0.663
25.000 ....... 22.32 95.83 9191 95.83 92.63 0.961 0.732 ..
25.500 ....... 17.82 94.66 90.01 94.66 90.36 1.000 0.783 97.6
26.000 ....... 12.59 93.14 87.31 93.14 87.11 0.973 0.806 96.2
26.500 ....... 9.327 90.89 83.32 90.89 82.42 0.957 0.722 95.1
27.000 ....... 7.192 87.28 77.38 87.28 75.68 0977 0.601 92.2
27.500 ....... 5.989 81.38 68.62 81.38 66.17 0.848 0.610 89.1 ... ...
28.000 ....... 4.852 71.85 5591 71.85 53.01 0.681 0.458 76.6 0.94 0.87
28.500 ....... 3.580 56.86 37.82 56.86 3517 0.461 0.205 41.5 0.68 0.50
29.000 ....... 2.889 33.96 12.57 33.96 11.44 0.247 0.122 14.1
29.500 ....... 2.260 0.000 0.000 0.000 0.000 0.157 0.075
30.000 ....... 1.635 0.000 0.000 0.000 0.000 0.123 0.079

Note.—The brighter magnitude bins in the SExtractor columns have no measurements as no tests were run at these values.
The completeness and reliability are assumed to be very high for AB < 26.5 as shown in the KFOCAS tests.

* For the KFOCAS columns the values refer to the magnitudes measured by KFOCAS. For the SExtractor columns the values

refer to the magnitudes measured by SExtractor.

® R,, 1 refers to the full coincidence formalism described in § 10.1.1.
® R,q 16 Tefers to the negative image technique described in § 10.1.2.
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TABLE 6
CATALOG OF DETECTED SOURCES WITH SIGNAL-TO-NOISE RATIO LEVELS LESS THAN 2.5

s A Ty

ID ® WFPC (arcsec) X y RA. Decl. tiso  lieo @160 tizo 110 @110 S/N  (arcsec?) (arcsec) Tests
501.000...... 4-851.0 0.53  557.50 139.00 3640.88 1209.423 29.98 29.85 30.34 99.99 99.99 99.99 1255 0.060 0.051 20000
502.000...... 4-8070 0.15 561.00 170.50 3641.11 121219 2935 3028 29.02 2828 2879 28.19 1917 0.080 0.050 20111
503.000...... 4-8220 1.01 54350 151.00 3641.15 1209.547 29.99 29.89 29.69 99.99 99.99 99.99 1240  0.060 0.051 10000
504.000...... 4-8222 147 53816 14994 364119 1209.121 27.82 3029 28.19 99.00 99.00 99.00 0.900  0.020 0.000 00003
505.000...... 4-807.0 1.71  559.33 188.16 364128 1213.54 28.64 2882 28.64 99.99 99.99 99.99 2365 0.180 0.119 20000
506.000...... 4-766.0 1.00 56250 197.00 364133 121449 99.99 9999 99.99 29.14 30.00 29.14 2.146  0.592 0.050 01000

Note.—Table 6 is presented in its entirety in the electronic edition of the Astronomical Journal. A portion is shown here for guidance regarding its form
and content. Units of right ascension are minutes and seconds, and units of declination are arcminutes and arcseconds.

* Sources with signal-to-noise ratio levels less than 2.5 have ID numbers of 500 or greater.

10.1. Half-Data Reductions

Our primary test of the reliability of observed sources
utilizes two independent images formed from subsets of the
integrations in each filter. The two images contain the even-
and odd-numbered integrations from a sequential number-
ing of the integrations after removal of images with excess
cosmic-ray persistence. Since there are three images per
orbit, this technique ensures that orbits are mixed between
the groups and that each group has an equal mix of images
observed at different times during the orbit. The widths of
the histograms of pixel values in the half-images are a factor
of ﬁ wider than the full image histograms. This is a good
indication that the width of the histogram in Figure 5 is due
to noise rather than faint sources.

These half-data reductions are the primary tests as they
represent truly independent sets of data that measure the
same quantity. Although useful, the coincidences between
the KFOCAS and SExtractor catalogs are not measure-
ments of two independent data sets. The coincidences
between the objects detected in the various NICMOS and
WFPC2 filter sets are again useful, but they are not measur-
ing the same quantity. As with the completeness tests, the
checks on the KFOCAS and Sextractor image catalogs are
carried out independently. With slight modifications,
however, the logic of the tests is essentially identical.

10.1.1. Logic of the Half-Catalog Tests

Our goal is a measurement of the probability that a
detected source with a given magnitude range is real
To facilitate the comparison between KFOCAS and
SExtractor tests, we utilized 076 diameter aperture magni-
tudes in both source extraction programs. We start by
grouping sources into half-magnitude bins centered on
integer and half-magnitudes. Our analysis method then uti-
lizes the statistics of objects detected in both, only one, or
neither of the independent half-catalogs for each aperture
magnitude bin. We consider objects as being present in both
catalogs if their centroids are within 0725 (2.5 drizzled
pixels) of each other.

From the completeness studies described in § 9 we deter-
mined the probability P, g(j, k) that an object in a magni-
tude bin j is recovered in a bin k where A or B refers to one
of the half-catalogs. The completeness is then C,(j) =
Y Pa(j, k) and similarly for image B. Let Ng(j) be the
number of real objects whose true magnitudes lie within bin
j. In addition, due to noise fluctuations (both Poisson and
nonrandom), there will be some false objects detected in bin
j. Let f4(j) be the probability that any object in image A in
bin j is a false detection, and let N,(j) be the number of

objects found in bin j on image A. Then

NA(j) = ; Ng(k) x Pa(k, j) + fa(D) X Na(i) 5 (9)

and
(6)

We then count the number of objects N,g(i,j) that
appear in common in both half-images A and B (i.e., which
agree in position to within 0725 of each other) and that have
measured magnitudes in A that place them in bin i and
measured magnitudes in B that place them in bin j. Then

Nag(i, j) = z Ng(k) x Pa(k, i) x Pg(k, j) .

Ng(j) = ; Ng(k) x Py(k, j) + f5(j) x Ng(j) -

™

Strictly speaking, we should add to equation (7) a term
that represents the number of times that a false detection in
both half-images will be coincident to within 0725 and will
land in the two magnitude bins in question. In practice this
number is small compared to one, and we neglect it.

If Ny;ne is the number of magnitude bins, then equations
(5) and (6) hold for the N.;,, values of j and in equation (7)
for the Ny, X Ny, combinations of i and j. The unknown
quantities are the N,;,, values for the number of real sources
with true flux placing them in bin N (k) along with the Ny
estimates for the probabilities f,(j) and f5(j) that a given
source in bin j is not a real source. Obviously, the system is
overdetermined. This is to be expected since equations (5),
(6), and (7) are just discrete representations of integral equa-
tions describing the observed number count distribution
from which we are trying to recover the true distribution,
taking into account losses, false sources, and errors between
the true and measured magnitudes due to noise.

A simplification of the preceding equations that is useful
for illustrative purposes and actual calculations in some
cases comes from ignoring the cross-terms and letting the
completeness in any bin be equal to C independent of which
half-catalog is addressed. This eliminates the cross terms in
equations (5), (6), and (7).

In that case, we obtain for each bin,

Ng = Nyg/ c? ®)
and
fa=1—=Nap/(C x Ny) ;
with a similar expression for fg.
10.1.2. Negative Image Tests

©

As described below, we are limited in the applicability of
the full formalism described above owing to small number
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statistics in the observed number of objects, which can lead
to reliability estimates greater than 1. An alternative pro-
cedure is to multiply the final images by —1.0 and search
for “detections” of objects in these negative images. This
assumes that the noise properties of the images are the same
for negative excursions as for positive ones. This is not in
general true since, for example, cosmic rays that are not
completely removed have no counterpart in the negative
image. In the case of the NICMOS HDF images, however,
not only are the cosmic rays removed fairly effectively
within each frame as a consequence of the nondestructive
readout but the very large number of dithered frames
making up our final images also reduces any residual
cosmic rays by a further larger factor. Unfortunately, we
have found that this method does not appear to be well
suited for the KFOCAS extractions for reasons associated
with edge effects near the large negative “holes” in the
counts produced by the bright real sources in the negative
images. However, this method does seem to yield useful
results for the SExtractor algorithm. We now discuss the
particular tests actually carried out on the KFOCAS and
SExtractor half-catalogs.

10.2. KFOCAS Half-Catalog Tests

The KFOCAS analysis of each half-image used the same
parameters as the total image analysis. Since the images are
in units of photon flux, the half-images have the same signal
strength for true sources but have a higher noise. Unlike
SExtractor, the 1 ¢ noise level for KFOCAS is an input
parameter. Retention of whole catalog input parameters
results in an input 1 ¢ noise value that is a ./2 lower than
the noise in the half-catalog. The half-image KFOCAS
analysis then detects more sources, since more random
noise fluctuations appear above the detection threshold.
Bright true sources should be detected in both images.
Faint sources of course could be detected in only one or
even neither of the half-images. Each source is marked in
the catalog test column as to whether it appeared in both,
only one, or none of the half-images.

In practice for the KFOCAS source we utilize the simpli-
fied formalism described in equations (8) and (9) of § 10.1.1.
In particular we note that the reliability in either half-
catalogis 1 — f, or 1 — f5, so we can say that the reliability
ris

ra = Nap/(C X Ny . (10)

Since all of the quantities on the right-hand side of equa-
tion (10) are known, r can be calculated using the values of
C previously determined. However, when this is formally
carried out, the values of r for some magnitude bins become
greater than 1 owing to a low value of C for that bin or
small number statistics. Since the true value of the com-
pleteness can never exceed one we can get a robust lower
limit on r by setting C equal to 1 and noting that

Ta = Nap/Ny (11)

with again a similar equation for r5. This equation depends
solely on the ratio of the number of sources detected in both
catalogs to the number detected in one of the half-catalogs.
The final reliability for a magnitude bin is just the average
of f, and f;. This reliability is appropriate for the half-
catalogs. The signal-to-noise ratio in the whole catalog is a
factor of \/5 higher. This corresponds the objects in the
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half-catalog that are the same factor brighter. This is an
offset of 0.376 mag; therefore, the calculated reliability
numbers in the half-catalog are appropriate for sources that
are 0.376 mag fainter in the whole catalog.

Table 5 contains the results of these tests under the
section marked KFOCAS. The completeness values listed
in the table are the values found from the analysis in § 9.1.
The reliability numbers are the numbers from the above
calculation adjusted to the appropriate aperture magnitude
for the total catalog. These values are in general lower than
those calculated using the measured values for complete-
ness in equation (10).

10.3. Sextractor Half-Catalog Tests

For both the whole image and half-images, we use the
SExtractor parameters given in Table 3 but determine the
completeness independently for the half-images using the
same procedure described in § 9.

As noted above, the noise properties in the half-images
scale almost exactly as expected, so that the false detection
rate at a given magnitude bin in the half-images should be
applied to a magnitude bin in the whole image fainter by
1/./2 lower in the flux, or 0.376 mag. We then use the mean
of the two false detection rates determined from the half-
images for the estimate of the false detection rate at this
slightly fainter magnitude.

As described in § 10.1.1, the system of equations (5)(7) for
Nr(k) is overdetermined, and we determined these values by
a least-squares fit to the observed values N ,z(i, j). Equa-
tions (5) and (6) then give the false detection rates for the
two half-images and use the mean of these determinations
for the whole image as explained above.

In practice, as already discussed in § 10.2, the small
number of sources actually detected in common in the two
half-images results in uncertainties in the reliability esti-
mates for magnitudes at which the completeness is near
unity. We have also estimated the reliability of the detec-
tions by the negative image method described in § 10.1.2.
The objects that SExtractor finds using this technique do
not seem to occur preferentially near the “holes ” associated
with the negative sources but occur in the higher signal-to-
noise ratio regions, as expected, so that SExtractor does not
seem subject to the same degree to the edge effects described
in § 10.1.2 for KFOCAS.

10.4. The Completeness and Reliability Table

The completeness and reliability table, Table 5, sum-
marizes the results of our tests described above. Columns
(2)~(8) refer to the KFOCAS reductions only, and columns
(9)—(11) refer to the results from SExtractor. As described in
§ 7.4, there is a systematic difference between aperture mag-
nitudes measured by KFOCAS and SExtractor, which
becomes significant for objects fainter than ~28.0, as shown
in Figure 8. Thus, in the first column, the magnitude is the
aperture AB magnitude measured by KFOCAS for the
KFOCAS reductions and by SExtractor for the SExtractor
reductions. The width of the magnitude bin is 0.5 mag cen-
tered on the value in the magnitude column. The signal to
noise ratio (S/N) is the average signal-to-noise ratio for all
objects in the magnitude bin. The columns labeled Cs,g,
Cli6, Csy1, and Cl;; are the completeness numbers for the
KFOCAS reduction listed in order for small and large
objects in the F160W filter and the F110W filter, respec-
tively. Next are the reliability numbers for the F160W and
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F110W filters, where no discrimination has been made
between small and large objects. Completeness and reli-
ability SExtractor results for the F160W filter comprise the
last three columns, where the column labeled R, ;¢ uses the
full half-image formalism, while the column labeled R, ;6
uses the negative image technique. It should be emphasized
that the reliability estimates at the faint end of the table are
subject to considerable uncertainty. However, the results all
seem to indicate a fairly low incidence of false detections
~5%—-15% at magnitude ~27.5, but this incidence rises
steeply at fainter magnitudes, while the completeness is of
order ~80%—-90% at magnitude 27.5, of order ~70%—75%
at magnitude 28.0, and falls rapidly beyond that point.
KFOCAS appears to lose more objects owing to merging
with other objects than SExtractor particularly for bright
objects. This is probably the cause of the less than 100%
completeness at bright magnitudes for the KFOCAS
reductions. The low number of objects in the brighter bins
limits the accuracy of the measurements, and differences of
+ 5% should not be considered significant.

Our discussion of the differences in source extractions in
§ 7.4 clearly indicates that the IDL and IRAF images are
essentially identical and that the magnitude differences in
Figure 8 are due solely to differences between the two
extraction programs, KFOCAS and SExtractor. There are
also differences in the number of detections between the two
programs. Running SExtractor on the IDL image with the
same set of parameters used for the SExtractor analysis of
the IRAF images, we find 284 galaxies, somewhat less than
the 356 found on the IRAF image. On the other hand, there
are a total of 350 objects selected by KFOCAS from the
whole IDL F160W image, also more than those found by
SExtractor on the IDL image. The total number of objects
found in the F160W image by KFOCAS and in the IRAF
image by SExtractor is nearly identical.

Inspection of Table 5 indicates the range of reliability and
completeness measures returned by the two methods. In
general the reliability and completeness measures from the
KFOCAS analysis fall below those determined via the SEx-
tractor analysis. This is particularly true when one con-
siders the difference in faint magnitudes discussed in § 7.4.
This indicates that at the faintest magnitudes the KFOCAS
numbers should be compared with the SExtractor numbers
for sources with SExtractor magnitudes nearly a magnitude
brighter than the KFOCAS magnitude. Part of this differ-
ence in reliability is due to the KFOCAS numbers being
lower limits on the reliability as discussed in § 10.2. Another
part of the difference, however, is due to the uncertainty
inherent in these calculations, and users of this catalog
should be aware of them. Our net philosophy is to be
aggressive in identifying potential sources but to be rela-
tively conservative in calculating their reliability and com-
pleteness.

11. GALAXY COUNTS

As with the original optical catalog of Williams et al.
(1996), it is not our intention in this paper to discuss scienti-
fic results. A commonly used statistic, however, is the differ-
ential number count of galaxies. Figure 10 presents this
statistic for the region of the HDF covered by our catalog.
The galaxy counts in number per magnitude per square
degree have been divided into half-magnitude bins. If the
object radius is less than 073, the aperture magnitude is
used. If the object radius is greater than this, the isophotal
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Fic. 10—Differential galaxy counts as a function of AB aperture mag-
nitude only of the sources appearing in the sigma-limited catalog.

magnitude is used. The number counts for the F814W filter
in the same area as determined from the optical catalog are
also shown for comparison. The same division between
aperture and isophotal magnitudes are used for the F814W
data. The counts for the WFPC2 F814W objects includes
all of the WFPC2 catalog objects in the NICMOS field, not
just those in common with NICMOS objects. There are no
aperture corrections applied to this data in order to facili-
tate comparison with the statistics presented in Williams et
al. (1996). It should be noted that the area covered by the
NICMOS image is very small. For a value of H, = 50 and a
value of Q, = 1, the sides of the NICMOS image are on the
order of 250 kpc for redshifts greater than 1. This is about
10 times smaller that the typical diameter of a region
forming a single galaxy from cold dark latter simulations
(Steinmetz 1998). Drawing any cosmological conclusions
from this small sample may be very suspect. Following the
discussion in Williams et al. (1996) we have not eliminated
split objects from the number counts. Except at very bright
magnitudes, we do not expect this to affect the statistics
significantly.

12. CONCLUSIONS

The NICMOS observations of the Hubble Deep Field
add significant value to the existing data by providing
improved wavelength coverage and access to objects that
are either too heavily extincted or too highly redshifted to
be visible in the original optical catalog. This paper is
designed to be a reference source for the use of this data in
various areas of research. Future papers will discuss various
aspects of the significance of these data.
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