Duplicity in Hubble Space Telescope Guide Stars: Fine Guidance Sensor Serendipitous Survey Results

Glenn Schneider
Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721; gschneider@as.arizona.edu
John L. Hershey
Astronomy Programs, Computer Sciences Corporation, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; hershey@stsci.edu
AND
Michael T. Wenz
Allied Signal Aerospace, Guidance and Control Systems, P. O. Box 70, Glenn Dale, MD 20769-0070; Wenz.Mike@lmmail.hst.nasa.gov
Received 1996 March 17; accepted 1998 May 22

Abstract

Data from the Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) interferometers, covering 22 months of guide-star acquisition operations, have been analyzed for evidence of stellar duplicity. The data comprise a survey of observed guide stars, all of which are taken from the HST Guide Star Catalog, ranging in magnitude from 9 to 14 . The survey results cover a parameter space for the newly found doubles, for the fainter stars, which are of smaller limiting angular separations than in any previous surveys. The normal HST engineering telemetry data from 13,979 acquisitions on 4882 stars have been processed. The FGS guidance data can reveal duplicity with separations ranging from approximately 30 mas , for the brighter stars, with small magnitude differences, up to the neighborhood of 500 mas, and in some cases to 1000 mas. The fraction of guide stars indicating duplicity is a function of the statistical criteria used but is over 5% at a very high level of confidence. It is possible that if some of the brighter and closer pairs could be identified as nearby, then their orbital motions would be rapid enough to allow a mass and distance determination on a timescale of a decade if followed with ground-based interferometric and spectroscopic instruments. A brief catalog of doubles is given, nearly all of which are of certain duplicity. Information for accessing on-line catalogs of large numbers of stars with lesser, but nevertheless strong, probabilities of duplicity and also for the solutions for duplicity from all acquisitions is provided.

1. INTRODUCTION

Observations with the Hubble Space Telescope (HST) require locking the Fine Guidance Sensors (FGSs) onto the interferometric fringes of guide stars. Normally, for maintaining a highly stable placement of targets in the various science instrument apertures, two guide stars are used, one in each of two FGS units (of three FGS units on board HST). Stars used for guidance are selected from the HST Guide Star Catalog (GSC). The GSC, which is available on CD-ROMs from various sources, has been thoroughly described in three papers (Lasker et al. 1990; Russell et al. 1990; Jenkner et al. 1990).

The stars used for guidance span the entire GSC magnitude range, from approximately 9 to 14 mag. Guide stars for each $H S T$ pointing are chosen by the HST Science Operations Ground System using a software system called the Guide Star Selection System, developed at STScI. The FGS instruments on $H S T$ are unique in their ability to detect quickly stellar duplicity at a small fraction of an arcsecond with high precision at the faint end of the GSC magnitude range, since ground-
based interferometric techniques are generally limited to brighter stars. By comparison, the Hipparcos results are complete only to a magnitude of 10.5 , with a limiting magnitude (sparsely covered) of 12.4 and with much lower resolution.

Prior to $H S T$ cycle 5 , acquisition data were normally telemetered to the ground with a sampling rate of 1 Hz . This temporal resolution was too coarse to yield information on the shape of the interferometer fringes. Beginning in early 1995, a new engineering telemetry format called "HN" was adopted for normal operations to permit detailed engineering studies of the degrading mechanical behavior of the FGS star-selector servos. The HN format provides FGS servo positions and photomultiplier tube (PMT) counts at 40 Hz , and this allows the shapes of the star fringes from the interferometers to be analyzed and a serendipitous duplicity survey to be carried out in parallel with the planned research of HST.

The FGS instruments can also be used to determine accurately the relative positions of stars in the FGS fields of view and for double-star studies by high-resolution interferometer
fringe scanning (Benedict et al. 1992). In the TRANS mode of astrometric observing, an FGS repeatedly scans the interferometric fringes of the target star in milliarcsecond or smaller steps and thereby achieves a much higher spatial resolution than is obtained in the normal guide-star acquisition mode. But observations for planned astrometric research require dedicated telescope time and must compete with all other scientific programs for approval. The astrometric information from HST guide-star acquisitions may be obtained at no additional cost of spacecraft time for all $H S T$ guide-star observations. The acquisition fringe information is obtained in a single scan with a spatial sampling of 6 mas along each of the two orthogonal interferometric axes. Roughly 7000 guide-star acquisitions per year take place as part of normal operations for all scientific programs.

Of the 13,979 acquisitions spanning 22 months of telescope operation in the present study, the number of unique stars observed was 4882 or about one-third of the total number of acquisitions. These numbers imply three walkdowns per star, but the repeated acquisitions are not equally distributed. Some scientific programs repeat observations many times on the same target while others involve only a single visit to a target.

The double-star detections from the FGS acquisition data are not biased by the duplicity screening process used in the formation of the GSC. The GSC has excluded stars that appear as double on the Schmidt astrograph plates, but the separation detection limit was a few arcseconds. The FGS double-star detections are well below that level.

The FGS interferometer fringes formed by the guide stars can reveal duplicity from roughly 30 mas to the neighborhood of 500 mas. Limits vary greatly depending on the star brightness, the magnitude of the companion, and other factors. Separations of over $1^{\prime \prime}$ are possible in the rare cases of doubles that cause the Fine Guidance Electronics (FGE) to fail to recognize a fringe and thus continue the scan up toward $2^{\prime \prime}$. Magnitude differences from 0 to 2 are typical, and higher values up to, and somewhat over, 3 are possible for stars at the bright end of the guide-star magnitude range and at the larger separations.

The brighter stars in the GSC are preferred for the best guiding performance, but the brightest stars available in the small FGS fields of view are often at the faint end of the GSC magnitude range. All-sky plots of the guide-star coordinates reveal a rather isotropic distribution of HST pointings. The HST extragalactic research programs select against the Galactic plane, leaving no predominance of low galactic latitudes and perhaps a slight deficit.

The incidence of binaries in the $9-14$ mag range with separations of a small fraction of an arcsecond has not been well known in the past. The prelaunch estimates of the statistics of guide stars predicted higher FGS lock-failure rates due to duplicity than that found in operations. The overestimate was due in large part to overly pessimistic predictions of the instrument response to binaries (Hershey \& Bély 1994).

The frequency of close binaries among the guide stars is of interest for the planning of the guidance of future space telescopes and interferometers, and all binary star statistical information relates in some degree to stellar formation and evolution. Some of the binaries discovered in this investigation could eventually yield stellar masses with extended study.

2. ACQUISITION OF GUIDE STARS BY HST FGS

Descriptions of the design and operation of the FGS instruments appear in various sources, such as in Bradley et al. (1991) and in STScI documents such as the Fine Guidance Sensor Instrument Handbook (Holfeltz 1996). The FGS operations of interest here are those that generate data while searching for the interferometer fringe after the "spiral search" and "coarse track" processes have located the position of the star to a few tens of milliarcseconds. The motion of the interferometer $5^{\prime \prime} \times 5^{\prime \prime}$ instantaneous field of view (IFOV) is controlled by integrated units carrying stepper motors, encoders, and deflection optics, and these integrated units are called "star selectors." In preparation for the search for the null of the fringe visibility function, the center of the IFOV of the interferometer is offset approximately 0 ". 5 from the photocenter of the star in the positive direction of the FGS X and Y coordinates (the "backoff" position). The IFOV is stepped toward the star (the "walkdown"), nominally in steps of 6 mas in each coordinate, usually at a rate of 25 ms of time per step $(40 \mathrm{~Hz})$. At each step, the location of the IFOV and the PMT counts are read out to the telemetry stream, providing the data for generation of the fringe visibility functions. There are four PMTs in each FGS, two for each coordinate. When both coordinates have satisfied an algorithm that tests for the presence of a fringe, the FGS is put in the "lock" state in which a 40 Hz servo loop causes the star selectors to follow the null of the fringe in each coordinate as small telescope motions cause the star to shift in the FGS IFOV.

The walkdown distance in each coordinate is the angular length scanned on the sky by the interferometers. The geometry of the walkdown scan by the IFOV is shown schematically in Figure 1. Each interferometer null line is $5^{\prime \prime}$ wide as it moves through the walkdown distance, generating the hatched parallelograms in Figure 1. At all times, each interferometer can receive photons from the entire IFOV, but the distance of a point source from the null line determines the degree of interference. The walkdown distance in each coordinate is the length of abscissae plotted in Figures 2 and 3 (which show eight walkdowns). Due to instrumental alignment differences, the walkdown distances vary between the two orthogonal interferometers in each FGS and among the FGS units. Table 1 gives the backoff and walkdown distances in each coordinate for the original three FGSs and for the new FGS installed in place of FGS1 in the 1997 February servicing mission, "FGS1R." The FGE allows only equal backoff distances in the two coordinates.

Fig. 1.-The geometry of the walkdown scan coverage in reaching lock. Each interferometer null line spans the IFOV. The IFOV in the "walkdown" is moved from the backoff position, as shown, to the lock position at the intersection of the two dark null lines. The sky coverage by the interferometer scan may be regarded as generated by a diagonal motion of two slits in the shape of a plus sign. Only the first quadrant is scanned in both coordinates. The third quadrant is not seen by the interferometers in the case of lock. The coverage is represented in the figure by the hatched parallelograms.

The relation generally adopted for the generation of a fringe visibility function from the pair of interferometer PMT counts in each axis is of the form $(A-B) /(A+B)$, where A and B are counts in an interferometer PMT pair. The interferometric fringes for unresolved-source visibility functions on each FGS axis, referred to alternatively as " S-curves" or "transfer functions" in the literature, are shown in the references to the FGS instrumental descriptions previously cited.

When the FGS detects a full lobe of the fringe structure, the interferometer moves to the central null, and only half an S curve is seen in the telemetry. This is the normal or "lock" case of acquisitions. Figure $2 a$ is representative of walkdowns reaching lock. The duplicity information for a close pair in lock, from half of their blended fringes, is of course far less well determined than from a full scan. If a fainter star lies in the walkdown path, $\gtrsim 150$ mas from the primary, an S-curve of smaller amplitude but of complete spatial fringe structure will be generated (Figs. $2 c$ and $2 d$). Doubles $\$ 150$ mas in separation in one coordinate will show superposed components (Fig. 2b) and will appear as a single, broadened S-curve when separations are near or below 45 mas (Fig. $2 a$ and Fig. 3a).

In less than 1% of the guide stars, the FGE fringe detection criterion is not met because of the presence of two stars of nearly equal brightness and separated fringes. Two stars in the interferometer cause the amplitude of each fringe to be half
the normal size, as may be inferred from the visibility function above. The denominator of the visibility function carries the counts from both stars, but only the counts from one star generate the difference $A-B$ for the fringe at each star location. This is the "no-lock" case of the acquisition process, and the fringes of both stars are fully scanned, resulting in more accurately determined separations and magnitude differences (Fig. 3). Typically, several tries are made if such an acquisition failure occurs, giving multiple full scans. The failure to lock on guide-star fringes is increasingly unlikely to occur in two nearly equally bright stars as separations decrease below 40 mas (Hershey \& Bély 1994) because the co-addition of the positive and negative parts of the S-curves from each star results in predominantly constructive summations.

3. EXTRACTION AND ANALYSIS OF WALKDOWN DATA

The temporal duration of the walkdown to fine lock normally is only several seconds. This is a very small fraction of the target visibility periods that are $\gtrsim 52$ minutes long. Extraction of the 40 Hz astrometric guiding data from the engineering telemetry for the walkdown analysis has been automated by augmenting the Observatory Monitoring System (OMS) software at STScI. OMS normally processes the engineering telemetry for all of the spacecraft subsystems 1 or 2 days after it has been generated on $H S T$.

When OMS processes the engineering data, flags for the states of the FGSs are tracked. The "fine-lock" flag is set when an FGS begins the walkdown process, and the "fine-lock data valid" flag is set when the FGE autonomously declares a lock in both coordinates. By special arrangement for this project, the OMS software writes a file of full 40 Hz resolution data instead of its normal 20 Hz format, from the two star-selector encoders and four PMTs for the time interval between the two flags.

The next stage of processing reads the files generated by OMS and decommutates and appropriately time tags the stream of the six parameters of interest (two encoder positions and four PMT counts for each FGS). The star-selector encoder positions are expressed in a curvilinear coordinate system in the $H S T$ focal plane and are converted to Cartesian coordinates internal to each FGS (see above references). The interferometer pairs (whose axes are orthogonal to each other) require the star selectors to be driven at separately varying rates by the FGE in order to generate a straight line in Cartesian coordinates for the walkdown. The PMT count pairs are converted to a fringe visibility function of the form discussed previously. The sum in the denominator provides a normalization factor only and so should not carry the noise of individual PMT readouts. It is formed in the analysis as a fixed mean of many readouts.

Fig. 2.-Examples of walkdowns on double stars reaching lock. (a) A case of lock that is representative of all normal lock cases in appearance. In this case, however, the solution gives evidence of blending with a companion. In panels $(b),(c)$, and (d), the primary star is in lock, showing only half of its S-curve. The secondary is sufficiently faint that it does not reduce the amplitude of the primary below lock detection.

3.1. \boldsymbol{S}-Curve-Fitting Technique

The separate or blended S-curves of a binary are represented as the linear superposition of two single-star S-curves with null points and amplitudes to be fitted to the data as represented by equations (1) and (2) for the X and Y instrument coordinates:

$$
\begin{align*}
& S(x)=B_{1 x} * S x_{\mathrm{ref}}\left(x-x_{1 x}\right)+B_{2 x} * S x_{\mathrm{ref}}\left(x-x_{2 x}\right) \tag{1}\\
& S(y)=B_{1 y} * S y_{\mathrm{ref}}\left(y-y_{1 y}\right)+B_{2 y} * S y_{\mathrm{ref}}\left(y-y_{2 y}\right) \tag{2}
\end{align*}
$$

Here $S(x)$ and $S(y)$ represent the observed visibility data in the respective coordinates, and B_{1} and B_{2} are scaling factors, or S curve amplitudes, to be found by the fitting process. $S_{\text {ref }}$ is a
single-star S-curve with its null at the zero point of its coordinate, $S_{\text {ref }}(0)=0$. The ratios of B_{1} and B_{2} represent the brightness ratio of the two stars. The arguments x_{1} and x_{2} of the $S_{\text {ref }}$ function are the null points of each single-star S-curve to be found by a fitting process.

The single-star reference S-curves differ among the four FGSs (three current and one replaced) throughout the full fields of view accessible by the star selectors. Each FGS IFOV may be positioned in an arc-shaped field roughly 3.5 by 15^{\prime} on the sky (commonly referred to as a "pickle") and defined by the instrument entrance apertures. The structure of the S-curves differs among the four FGSs, and for each FGS there is variation in the structure throughout the pickle. As part of the FGS calibration programs, reference S-curves were obtained

Fig. 3.-Examples of walkdowns on double stars with no-lock. In each panel, the interferometer has not met the requirements for lock because the amplitudes of the S-curves are diminished owing to the presence of two stars of similar magnitude. In panel (d), the full, separate S-curves are generated.
in a grid across the four FGS fields of view with high signal-to-noise ratio (S / N) by the astrometric TRANS mode programs on bright stars. These reference data were obtained, along with their locations in the four FGS instrument fields of view, from the STScI Hubble Data Archive. Before each walkdown was fitted, a reference S-curve was chosen from the same FGS, closest in distance in the pickle to the observed guide star.

Instrumental S-curves are not readily amenable to analytic representation, particularly since they are distorted into complex shapes by the spherical aberration of the HST primary mirror. (There have been no corrective optics installed on HST for the FGSs like there were for the scientific instruments.) Observed reference S-curves (rather than analytical models) are therefore used in the fitting process that employs numerical techniques.

A differential correction method for fitting was adopted. For
each interferometer axis, the method assumes that starting values are available that are near the correct values. The starting values are used in the fitting equation to generate a set of residuals, $R(x)$. The residuals are represented as the total derivative with respect to the fitting parameters of equation (1), with corrections to the parameters to be determined:

$$
\begin{equation*}
R(x)=\sum \frac{\partial S(x)}{\partial p_{i}} \Delta p_{i} \text { or } R(y)=\sum \frac{\partial S(y)}{\partial p_{i}} \Delta p_{i} \tag{3}
\end{equation*}
$$

Here the p_{i} are the amplitudes and positions of equations (1) and (2). The amplitude derivatives in each coordinate are simply the values of the reference S-curve at the same distances from their nulls, but the derivatives with respect to position require a numerical differentiation of the S-curves. Leastsquares fits are made for equations (3) to determine small cor-

TABLE 1
Backoff and Walkdown Distances (arcsec)

Distance	FGS1	FGS1R $^{\mathrm{a}}$	FGS2	FGS3
X backoff $\ldots \ldots .$.	0.45	0.45	0.10	0.28
Y backoff $\ldots \ldots .$.	0.45	0.45	0.10	0.28
X walkdown $\ldots .$.	0.43	0.53	0.68	0.88
Y walkdown $\ldots .$.	0.63	0.78	0.94	0.59

${ }^{\text {a }}$ FGS1 replacement, 1997 February Servicing Mission.
rections for each of the parameters. A fraction of the computed corrections is then applied to each parameter value, allowing a new set of residuals to be computed. The cycle is repeated until the corrections are a small fraction of their formal errors in the least-squares fit to the current residuals. If oscillation in the parameters occurs, the fraction of the correction used is reduced. A similar fitting method has been used successfully on lunar occultation fringes by Schneider (1985). Sufficient logic is included throughout the initial fitting program in order to provide the stability in the solutions that allows the initial processing of thousands of walkdowns in unattended computer runs.

In principle, the number of fitting constants could be reduced in equations (1) and (2) by constraining the ratio of the amplitudes to be the same in both coordinates. A code was developed for combined solutions, but independent X and Y solutions were made for the results presented here. Combined solutions are less convenient for automation with a differential correction technique because assumptions must be made as to the relative position of the fainter and brighter components for starting parameters.
S-curves can be transformed into simple energy profiles, resembling a slit-scan of the component stars, by a Fourier deconvolution method (Hershey 1992) and then fitted with scaled replicas of the profile of a single reference star. The method was developed for TRANS mode observations of complete S-curves that have much finer spatial sampling and much larger S / N than walkdown S-curves, a requirement for Fourier deconvolution. The method is most useful for interpreting TRANS mode scans of multiple stars (Lattanzi et al. 1994). It can be used to analyze the acquisition walkdown S-curves of higher S / N but introduces an additional processing step.

3.2. Analysis of Doubles in the "Lock" Case

The walkdown data appear in two basic forms, arising either from a "lock" or "no-lock" walkdown. Undoubtedly, many guide stars are double at the 30 mas level and should yield the fits often seen in the results, but spurious fits may be generated. As previously noted, the duplicity information on close pairs in the half S-curve is limited in the lock case. Plots of singlestar walkdowns reaching lock closely resemble Figure $2 a$. However, the solution for Figure $2 a$ indicates that the halffringe is broadened as if the star is double. Without independent checks, it is not possible to assign a limit for close double detection in lock. Above about 60 mas separation, the blended
half S-curves become more clearly distorted by the companion, if not too faint, and provide stronger constraints to the solution for duplicity (Figs. 2b-2d).

The lock cases have been fitted with the differential correction process by first assuming a blended pair with starting values of equal brightnesses and 45 mas separation. From that start, separations from 0 to over 100 mas can be reached by the differential-correction process. Usually one star dominates the fit and the other falls to an insignificant brightness. All final-fitting constants and their errors are recorded. For the possibility of a wider companion, the remaining 0 ". 5 of the walkdown outside the locked star fringe is checked for evidence of another S-curve. The most likely position, regardless of how weak, is taken as the starting position. Again, if the data do not support a wide companion, the amplitude coefficient, B_{2}, drops to a small value relative to its error, but the solution is recorded regardless of the results.

The normal walkdown to lock is not a full survey of the area surrounding the guide star. The nominal width of the interferometer IFOV is $5^{\prime \prime}$. The walkdown is at 45° in the first quadrant of FGS coordinates. The scan can be thought of as the scan of a pair of slits arranged in the shape of a plus sign where the bars of the plus sign are $5^{\prime \prime}$ in length (Fig. 1). The X interferometer covers part of quadrants 1 and 4 in a band $5^{\prime \prime}$ wide, and the Y interferometer covers part of quadrants 1 and 2. In the case of lock, there is no coverage of quadrant 3 , as shown in Figure 1. A companion will be detected in two coordinates only if it lies in quadrant 1 . The fraction of doubles detected in two coordinates is predicted to be less than about 18% of all double detections from the ratio of areas in Figure 1 and a probability density function of separations (based on a weighted mean of the three FGSs). The percentage found is 13% from the data for the 13,000 walkdowns of this study.

3.3. Analysis of Doubles in the "No-Lock" Case

For the no-lock case, good starting values for the fitting parameters can generally be set and a solution made, as in Figure 3. Autonomously convergent solutions, however, are sometimes difficult to obtain with computed initial parameter values, and occasional data anomalies occur, which are not amenable to automated solutions. Starting values are initially generated by computer algorithms, but there are options to override computed starting values manually and to rerun the solutions. Some stars yield a lock in one coordinate but a nolock case in the other. If a guide star fails lock, it is removed from the guide-star candidate list and thus, unfortunately for double-star science, is never seen again by the FGS interferometers.

Formal separation errors can be as small as a few milliarcseconds. In cases of repeated no-lock walkdowns on the same star, the errors in the solution parameters are determined from the differences of the individual acquisitions rather than from the internal formal errors of the fitting process. Separations have often repeated with standard deviations under 2 mas.

Duplicity data from the solutions are provided in Table 2. A full explanation of the tabular entries is given in the accompanying footnotes. For the many stars that have been observed more than once, the standard error of the separation measurements and magnitude differences is given in Table 2.

For either the lock or no-lock cases, double-star fitting accuracy is primarily a function of star brightnesses. The guidestar range of 9-14 magnitude corresponds to a range of a factor of 10 in photon noise. However, guide stars in the latter part of the 13th magnitude are acquired with a doubling of the integration time spent at each walkdown step in order to improve the reliability of the acquisition process, and thus the noise range is roughly a factor of 7 from brightest to faintest guide stars.

4. DOUBLE-STAR STATISTICS

The distributions of separations and magnitude differences (Δm) of the guide stars are shown in Figure 4. The magnitude distribution of the guide stars chosen for use by HST reflects that of the GSC. This, however, is not necessarily a perfectly unbiased sample since the brighter stars available in the FGS fields of view are preferentially selected.

The histogram of the angular separations of the doubles in Figure 4 is similar to the roughly (1/separation) distribution functions found in various double-star surveys and catalogs such as the Washington Double Star Catalog (Hogeveen 1990). Figure 4 includes single- and two-coordinate separations. The separation distribution seen in the guide stars is a convolution of their physical separation distribution with the distance distribution of the guide stars and is limited in range by the capabilities of the FGSs. The larger incidence of binaries at small separations is primarily due to the increase in the number of stars with magnitude and thus, statistically, with distance.

The separation distribution in Figure 4 and the number of doubles detected are a sensitive function of the statistical criteria for duplicity. If the detection threshold for duplicity is set too low, a clear excess of numbers appears near the limit of separation detection for the no-lock cases. The occurrence of such an excess serves as an independent guide on the setting of duplicity criteria for the half S-curve fits. A quantitative measure of the significance level of the fits for duplicity is the ratio of the S-curve amplitudes to their formal errors from the least-squares solutions.

Higher ratios of amplitude coefficients to their errors need to be met in the solutions for close pairs in the lock case, since only a half-fringe is available for fitting. As noted above, the half-fringes are susceptible to mismatches between reference and observed S-curves, compounded with all other sources of error (Fig. 2a). The solutions could generate a faint, spurious companion to improve the fit of the reference to observed half S-curves. The criteria for duplicity below 100 mas for the lock case have been set to increase as Δm increases above 1.0 and
as separation decreases below 100 mas. Separations at 25 mas in lock with small Δm can meet very high significance criteria. Undoubtedly, there are many real doubles at this separation level; although without independent tests, clear limits of validity cannot be set. No-lock cases below 35 mas are included in Table 2. A few separations under 35 mas in Table 2 are nolock cases.

Reducing the significance level required for the solutions for the companions can cause the percentage of doubles to rise to 10% or more, with significance levels that are quite strong by statistical standards. There are 269 unique star entries in Table 2 , which represents a duplicity detection fraction of 5.5% of the 4882 unique guide stars in this study. With the detection criteria set to yield a conservative 5% duplicity fraction, visual inspection of the S-curves confirms unambiguously the presence of a companion in nearly all cases. Since quadrant 3 is not sampled in the lock cases, the duplicity fraction for the same detection criteria would rise to approximately 7% if corrected for incomplete sampling.

The distribution of Δm in Figure 4 remains roughly constant up to $\Delta m=2$ then drops rapidly. The detection of companions is limited by the photon noise in the data; this photon noise is a function of the magnitudes of the components. For the close cases in lock, the presence of only half an S-curve severely limits the range of Δm. The doubles with $\Delta m>2$ in Table 2 are generally more widely separated and of smaller systemic magnitudes.

Guide stars are observed across a time interval of a year or more if the scientific target is on a long-term proposal. If the target is visited across intervals spanning several months, then it is likely that the same guide stars are not used because the default roll of the telescope changes. Of the set of guide stars that are repeated across intervals of a year, only a small number show evidence of duplicity in both coordinates. Only a subset of those are likely to be physically close enough to show orbital motion. Detections in two coordinates are needed for a clear detection of orbital motion, unless the roll of the telescope remains the same. Thus far, these severe requirements leave no star with solutions in both X and Y and a large time interval in the 22 months of coverage. Two cases repeat across a year at different rolls but with one coordinate below the duplicity criterion.

The cases of single-coordinate detections carry limited spatial information. As suggested by Figure 1, a single-coordinate observation indicates the presence of a star somewhere along a line $5^{\prime \prime}$ long and hence is only a projection of the true separation along the interferometer detection axis. The companion lies somewhere along a line with the position angle given in Table 2, with its closest distance from the primary given by the separation in the table. Single-coordinate detections, however, do yield unambiguous magnitude differences of the stellar components.

TABLE 2
Selected Doubles from HST Acquisition Data

R.A. ${ }^{\text {a }}$	Decl. ${ }^{\text {b }}$	GSC No. ${ }^{\text {c }}$	Epoch ${ }^{\text {d }}$	Mag ${ }^{\text {e }}$	$X Y^{\text {f }}$	Sep ${ }^{\text {g }}$	P.A. ${ }^{\text {h }}$	$\Delta M^{\text {i }}$	s.e. ${ }^{\text {j }}$	$\mathrm{N} \chi^{\mathrm{k}}$	$\operatorname{Sep} X^{1}$	s.e. ${ }^{\text {m }}$	EM^{n}	$\mathrm{N} y^{\text {o }}$	Sep Y^{p}	s.e. ${ }^{\text {q }}$	$\mathrm{EM}^{\text {r }}$
002530.7	+00 1213	0000300683	$9615713: 35$	12.59	$X Y$	331.7	176.1	1.55	0.21	1	91.8	...	\ldots	1	318.7	\ldots	\ldots
005720.6	+031819	0001500284	97322 04:48	9.85	Y	133.7	143.9	0.22	0.01	\ldots	\ldots	2	133.7	2.0	1.4
024131.4	+072627	0005300137	97293 21:45	12.89	X	394.4	29.4	1.68	...	1	394.4		
042338.4	+02 1515	0007500143	$9623322: 40$	12.91	X	276.3	78.1	1.40		1	276.3			\ldots			
041418.0	+05 1516	0008000765	97198 20:33	9.65	XY	349.4	168.8	0.05	0.01	2	66.1	2.1	1.5	2	343.1	1.6	1.1
083210.1	+04 1717	0021801129	96077 12:58	10.89	X	248.9	2.4	0.43	...	1	248.9	\ldots	...	\ldots	...	\ldots	\ldots
105538.4	+065556	0026100391	97088 11:55	13.45	X	479.5	35.0	0.77		1	479.5		\ldots			...	\ldots
121947.8	+0209 09	0028100228	97032 19:36	12.63	Y	682.5	11.3	1.10			...			1	682.5		.
121754.7	+012626	0028100685	$9711416: 38$	11.68	$X Y$	81.8	174.6	0.81	0.11	3	-48.8	0.5	0.3	16	65.6	3.4	0.8
121754.7	+012626	0028100685	$9711617: 38$	11.68	X	45.2	26.9	0.63	...	1	45.2
122149.2	+01 1919	0028200774	97020 13:22	13.77	X	622.6	178.0	1.82		1	622.6
122200.5	+041616	0028500705	96075 22:36	13.78	Y	505.4	74.0	1.40		\cdots	...	\ldots	\ldots	1	505.4	.	..
123030.5	+010101	0028900652	96192 22:53	12.79	X	85.7	20.2	1.26		1	85.7	\ldots	\ldots	\ldots
142204.1	+03 3940	0032101239	97187 03:39	13.48	$X Y$	509.2	66.5	0.35	0.00	1	379.0	\ldots	\ldots	1	340.0	.	\ldots
150326.9	+00 5657	0033400864	96210 08:24	13.50	Y	132.4	109.2	1.80	0.00		...	\ldots		2	132.4	66.5	47.0
150628.8	+021818	0033800021	$9719114: 12$	13.65	Y	633.4	115.4	0.08	...		\ldots	1	633.4		...
150451.1	+015758	0033800481	97191 13:30	13.42	Y	395.0	115.3	1.52	..	\cdots	\ldots	1	395.0
151651.4	+071414	0034800590	97222 06:47	12.35	X	53.3	20.0	1.88		1	53.3	...	\ldots				...
160141.3	+014445	0036600155	96223 22:11	11.54	Y	57.7	124.8	0.41	0.16	\ldots	\ldots	2	57.7	0.9	0.6
213148.0	+00 1919	0054200256	$9715023: 24$	11.17	Y	43.4	66.3	0.49			\ldots	...	\ldots	1	43.4
002516.8	+104647	0059900863	$9718916: 54$	11.88	Y	205.0	58.8	0.65	\ldots	\ldots	\ldots	\ldots	\ldots	1	205.0	..	
041637.2	+112121	0067500232	97009 05:28	11.93	Y	214.5	70.3	0.01	\ldots		...	\ldots	\ldots	1	214.5		
042439.8	+134545	0068000719	97034 23:14	9.43	Y	509.1	77.7	0.03	\ldots		\ldots	\ldots	...	1	509.1	\ldots	\ldots
050233.4	+115354	0069301528	$9708510: 51$	13.08	Y	719.6	178.2	1.15		\ldots		1	719.6	...	\ldots
062132.2	+095051	0073502891	97107 23:30	12.32	X	50.4	7.7	1.37	0.20	2	50.4	0.2	0.1	
064101.4	+09 1515	0074601824	96088 06:13	10.67	Y	102.6	86.0	0.40	0.00		2	102.6	0.0	0.0
085409.6	+120304	0081400939	97127 01:48	10.85	X	124.8	106.3	1.65		1	124.8	\ldots				...	
104801.4	+122324	0084900462	97099 15:59	12.27	Y	90.4	39.8	1.38	\ldots		...	\ldots		1	90.4	...	
121345.6	+09 4445	0086600416	97084 22:49	9.13	Y	255.5	173.8	2.42	\ldots		\ldots	\ldots		1	255.5	.	
123444.2	+082121	0087400037	96173 06:03	13.27	Y	525.4	108.5	1.10				\ldots		1	525.4	.	
123012.0	+074748	0087400971	$9612314: 14$	10.94	X	672.4	126.5	1.60		1	672.4	
123057.8	+122828	0087700297	$9618412: 13$	11.87	X	293.2	23.6	2.10	...	1	293.2	\ldots	
123602.2	+122424	0087800489	97016 20:14	13.75	$X Y$	400.5	233.9	0.95	0.20	4	109.6	11.2	5.6	4	385.2	12.9	6.5
122459.3	+124748	0087900299	97021 16:17	13.97	$X Y$	281.4	219.1	0.74	0.19	8	112.4	4.8	1.7	,	258.0	...	
123444.9	+142021	0088000077	$9613816: 05$	13.24	Y	415.3	123.0	1.30	1	415.3	...	\ldots
180436.2	+105252	0101200409	$9624615: 31$	12.83	Y	118.6	101.8	1.80				1	118.6	...	\ldots
195123.3	+084646	0105801741	$9724611: 55$	12.48	X	135.4	108.7	0.91	\ldots	1	135.4	...	\ldots	\ldots	...	\ldots	\ldots
215138.4	+124343	0113000098	$9621014: 40$	10.95	X	939.2	121.7	0.11	...	1	939.2	\ldots
215116.3	+122020	0113000524	96339 22:35	13.03	X	323.0	158.3	1.10	\ldots	1	323.0	\ldots	\ldots	..		.	\ldots
215001.9	+124545	0113001244	96217 16:35	13.06	XY	593.8	338.9	0.59	0.17	13	422.1	7.4	2.1	15	417.6	4.4	1.1
221440.1	+133939	0114901428	96111 02:03	13.65	X	164.7	175.8	1.60	\ldots	1	164.7	\ldots
223631.7	+133737	0115700813	97129 20:52	13.65	X	424.3	166.7	1.69	\ldots	1	424.3	\ldots	...	\cdots	...	\ldots	\ldots
225030.7	+143030	0115900555	97176 20:41	11.48	Y	498.8	61.1	0.90	\ldots	\ldots	1	498.8	\ldots	
001910.3	+162627	0117900100	$9703000: 52$	12.84	Y	481.2	148.7	1.43		\ldots	\ldots	...		1	481.2	\ldots	\ldots
002744.2	+165859	0118000852	97288 11:41	13.13	X	59.2	136.1	0.34	0.29	10	59.2	5.3	1.7		...	\ldots	\ldots
002744.2	+165859	0118000852	97288 15:01	13.13	X	61.7	138.1	0.33	0.20	12	61.7	2.6	0.8	\cdots	\ldots	\ldots	\cdots
034030.2	+194041	0124300607	$9723414: 31$	11.99	$X Y$	70.2	10.2	1.40	0.33	8	39.0	3.1	1.1	2	58.5	2.9	2.0
034108.6	+192122	0124300688	97233 06:34	13.47	X	251.6	156.5	1.95	...	1	251.6	\ldots
040941.5	+165151	0125100216	96059 08:43	13.09	Y	233.2	79.7	1.79	\ldots	\ldots	\ldots	1	233.2	\ldots	...
041206.2	+171213	0125500167	$9722122: 00$	13.73	X	158.1	168.5	0.46	\ldots	1	158.1	\ldots	\ldots
043125.2	+181616	0126900469	97320 19:28	10.23	Y	73.0	95.8	1.19	0.00	\ldots	...	2	73.0	0.1	0.1
043158.6	+181819	0126900641	97327 19:19	13.08	$X Y$	245.2	318.7	0.25	0.16	1	-236.8	2	63.7	8.5	6.0
053506.7	+220707	0130901689	97219 15:14	13.07	Y	59.8	86.4	0.71	\ldots	1	59.8
090621.1	+165959	0140101339	97320 22:46	12.25	$X Y$	932.4	86.0	0.24	0.16	1	923.4	1	129.2	\ldots	...
122823.0	+165152	0144500496	$9716312: 32$	13.71	X	75.2	27.1	0.05	...	1	75.2	\ldots	...	\ldots	\ldots
125613.7	+215657	0145501107	97153 00:53	12.90	Y	75.9	113.9	0.90	0.76	\ldots	...	\cdots	\ldots	2	75.9	51.6	36.5
135625.2	+180809	0147000113	96130 01:05	12.08	X	434.6	133.0	0.29	0.18	13	434.6	7.0	2.0
135527.8	+181314	0147000363	97192 10:35	13.84	Y	334.5	113.5	1.41	\ldots	\ldots	1	334.5
135634.6	+182627	0147000701	96128 21:22	13.07	Y	276.4	133.0	2.00	\ldots	...	\ldots		...	1	276.4	\ldots	...
145738.9	+212121	0149100862	97078 02:27	11.95	X	369.8	161.3	2.04	\ldots	1	369.8	\ldots	\ldots

TABLE 2
(Continued)

R.A. ${ }^{\text {a }}$	Decl. ${ }^{\text {b }}$	GSC No. ${ }^{\text {c }}$	Epoch ${ }^{\text {d }}$	Mag ${ }^{\text {e }}$	$X Y^{\text {f }}$	Sep ${ }^{\text {g }}$	P.A. ${ }^{\text {h }}$	$\Delta M^{\text {i }}$	s.e. ${ }^{\text {j }}$	$N x^{\text {k }}$	Sep X^{1}	s.e. ${ }^{\text {m }}$	$E M^{\text {n }}$	$\mathrm{N} y^{\text {o }}$	$\operatorname{Sep} Y^{p}$	s.e. ${ }^{\text {q }}$	EM ${ }^{\text {r }}$
153456.6	$+150101$	0149401144	96267 01:56	13.57	X	454.9	168.8	1.60	\ldots	1	454.9
154401.9	$+181010$	0149801006	97017 04:50	11.40	$X Y$	282.4	356.5	0.88	0.60	2	237.3	1.6	1.1	4	153.1	1.9	1.0
155017.5	+211718	0150201040	97208 08:51	13.11	X	585.2	135.0	1.63		1	585.2			\ldots	...
204215.8	+192122	0164201002	$9714504: 36$	12.16	$X Y$	410.9	47.1	2.45	0.00	1	396.0			1	109.8	...	
211449.0	+174545	0165400039	97303 02:26	13.47	Y	172.2	80.7	1.85		...				1	172.2		
040229.0	+225758	0181301582	97327 15:47	11.70	Y	81.4	114.3	0.43	0.00	\ldots	...			2	81.4	0.0	0.0
042211.5	+270304	0182400375	97302 02:37	12.88	Y	135.6	93.0	1.62		\cdots				1	135.6	...	
043348.0	+234647	0182900574	97218 21:25	12.32	X	106.2	168.0	0.37	0.10	4	106.2	0.3	0.2	\ldots	.
043814.6	+25 4242	0183400003	$9724812: 51$	12.86	X	137.6	99.1	1.74	...	1	137.6	\ldots	...		\ldots	\ldots	.
050224.7	+25 2727	0184901616	97312 17:31	12.81	X	115.7	96.0	1.68		1	115.7	\ldots	\ldots		\ldots	\ldots	.
083035.3	+24 1516	0194101610	96302 02:43	11.96	X	311.1	115.6	0.40		1	311.1	\ldots	\ldots		\ldots
082909.8	+251919	0194401555	97066 18:39	12.25	X	140.9	116.9	0.09		1	140.9					..	\ldots
100111.8	+250203	0196401058	96124 09:42	12.26	XY	432.7	279.6	0.29	0.26	12	244.7	4.7	1.4	1	-356.9	..	
100446.6	+29 1111	0197400921	$9634501: 52$	13.61	Y	324.6	103.6	1.86			1	324.6	\ldots	\ldots
100358.3	+284949	0197400927	96345 00:08	13.58	X	297.4	13.6	1.56		1	297.4			
110828.8	+240203	0197801373	$9610713: 43$	12.44	X	63.1	35.3	0.50		1	63.1				\ldots	\ldots	
122550.4	+224647	0198901471	97162 08:18	13.68	X	252.2	19.8	1.33	0.27	2	252.2	0.2	0.2		\ldots	\ldots	..
130152.8	+273434	0199500823	$9719312: 13$	13.25	$X Y$	589.0	270.2	0.50	0.00	1	563.7	...		1	170.6	...	
125856.9	+275152	0199501980	$9613601: 39$	11.70	X	63.5	48.1	0.24	0.10	3	63.5	1.6	0.9		
125126.4	+275959	0199502429	$9617312: 32$	13.18	Y	421.2	116.2	0.90	1	421.2	...	
134152.3	+28 3535	0200400832	$9622100: 55$	13.72	Y	260.3	98.3	1.60	\ldots	\ldots	\ldots	1	260.3	\ldots	\ldots
153528.3	+264647	0202900426	97246 06:56	12.88	Y	581.5	178.4	1.52		\cdots	\ldots	\ldots	...	1	581.5	...	
215140.8	+285152	0221401684	96331 18:23	12.34	X	570.7	69.2	1.64		1	570.7	\ldots	\ldots	
224206.5	+295050	0223200311	$9614422: 23$	11.46	X	42.2	76.1	0.15		1	42.2			.	\ldots	\ldots	
013354.0	+304849	0229300519	$9721615: 57$	11.78	X	419.4	154.2	0.78	0.09	3	419.4	1.6	0.9	.	\ldots	\ldots	
013340.6	+305353	0229300763	97163 21:30	13.27	X	146.4	173.5	0.10	...	1	146.4			
013340.6	+305353	0229300763	$9716822: 59$	13.27	XY	191.1	43.1	0.49	0.30	4	150.9	3.0	1.5	1	117.3	...	
013811.3	+330506	0229700838	96363 11:26	12.08	X	485.0	78.2	1.77		1	485.0		
022133.1	+354040	0232201239	$9723121: 14$	13.52	X	50.3	155.4	1.61	\ldots	1	50.3	...	\ldots	\ldots
073756.2	+351919	0246101974	$9713902: 27$	12.81	X	131.4	89.3	2.05		1	131.4	\ldots			...		
071605.8	+364748	0246300941	97077 04:34	11.80	Y	66.1	106.4	1.05	0.00		...	\ldots	...	2	66.1	0.2	0.1
095748.0	+3233 33	0250501382	$9616501: 28$	13.99	$X Y$	303.0	66.0	0.85	0.37	1	251.4	\ldots	\ldots	6	169.1	9.8	4.0
121417.5	+ 325152	0252701307	97149 02:45	13.14	Y	440.3	33.4	0.96	0.21	\cdots	\ldots	3	440.3	6.9	4.0
125253.8	+311616	0253100098	97210 18:46	13.54	$X Y$	161.7	166.4	0.17	0.00	1	48.9	\ldots		1	-154.1	...	
132405.3	+305253	0253600284	96065 11:46	12.70	Y	678.6	135.0	1.60	\ldots	\ldots	1	678.6	...	
133920.2	+332324	0254000330	$9713411: 43$	10.85	X	66.4	60.3	0.22	\ldots	1	66.4	\ldots	
131526.2	+361011	0254100372	$9619119: 33$	13.63	Y	130.9	108.2	1.80	\ldots		\ldots	1	130.9	...	
135412.5	+33 4242	0254700860	$9724503: 57$	10.40	X	254.5	67.6	0.81	\ldots	1	254.5	\ldots	\ldots		\cdots	...	\ldots
160158.3	+372727	0257900283	$9622512: 51$	13.99	Y	210.8	106.6	1.60	\ldots			\ldots	...	1	210.8	\ldots	\ldots
161807.2	+32 1516	0258001393	$9731121: 28$	13.62	X	406.8	115.9	1.81		1	406.8		
163138.2	+30 2627	0258102282	$9726605: 59$	13.47	X	112.8	168.3	1.69	0.28	2	112.8	4.9	3.5		\ldots	...	
161346.1	+335353	0258302033	96282 21:34	13.89	Y	311.2	58.9	1.50	1	311.2
201326.6	+325252	0267500056	$9724413: 12$	12.42	Y	170.9	132.0	1.98	\ldots	\cdots	...	\ldots		1	170.9	...	
003730.5	+39 4141	0278801003	$9722611: 31$	13.00	X	168.7	137.6	0.02	\ldots	1	168.7	\ldots	\ldots	
004140.1	+40 0910	0280100458	96324 17:43	11.67	Y	214.5	27.4	1.59	\ldots	\ldots	\ldots	1	214.5	...	
004234.8	+412021	0280502180	$9634511: 19$	12.60	X	273.0	5.0	0.63	0.02	2	273.0	3.8	2.7		...	\ldots	
031940.6	+413536	0285601426	97227 20:49	12.31	X	84.3	166.0	0.67	0.17	10	84.3	1.5	0.5		\%	\ldots	
073835.8	+39 0404	0295800575	97322 21:28	13.72	Y	341.1	79.3	0.80			1	341.1	\ldots	\ldots
085514.4	+435656	0298900647	$9627214: 44$	13.14	X	256.2	30.2	1.40	\ldots	1	256.2	\ldots	\ldots	\ldots	\ldots
103401.0	+39 3940	0300200979	$9703122: 54$	13.14	X	47.9	64.1	0.23		1	47.9	\ldots	...	\ldots	\cdots
111413.2	+4043 44	0301001294	$9708123: 53$	13.70	XY	801.8	86.0	2.39	0.00	1	-217.6	\ldots	\ldots	1	-771.7
120947.3	+39 1515	0301702022	97196 07:56	12.00	Y	88.2	89.5	1.85	\ldots	.	\cdots	\ldots		1	88.2
133315.4	+3800 00	0302500972	97211 10:24	13.62	XY	72.9	53.7	1.62	0.80	2	54.5	3.5	2.5	1	48.5	...	
133611.8	+374747	0302601053	$9719621: 11$	12.47	X	48.9	106.4	0.29	...	1	48.9	\ldots
135221.1	+39 4243	0302700281	$9718203: 25$	11.50	Y	284.2	122.2	1.84	\ldots	...	\ldots	\ldots	\ldots	1	284.2	\ldots	\ldots
133110.1	+411617	0302800671	97299 01:05	13.17	X	399.8	170.8	1.85	\ldots	1	399.8	\ldots	\ldots
170641.8	+440809	0308401370	97254 06:55	13.84	X	220.6	1.3	0.18	\ldots	1	220.6	\ldots	\ldots	\ldots	\ldots
192001.4	+374444	0313401904	96312 00:29	12.26	Y	240.6	63.5	1.40	...	\ldots	1	240.6
234109.8	+442121	0324400148	$9719615: 02$	13.00	X	514.5	144.3	1.77	\ldots	1	514.5		\ldots	...
014234.6	+50 3940	0329101035	96288 22:41	12.82	X	348.3	8.4	1.10	\ldots	1	348.3	\ldots	.	\ldots	\ldots	\ldots	\ldots

TABLE 2
(Continued)

R.A. ${ }^{\text {a }}$	Decl. ${ }^{\text {b }}$	GSC No. ${ }^{\text {c }}$	Epoch ${ }^{\text {d }}$	Mag ${ }^{\text {e }}$	$X Y^{\text {f }}$	Sep ${ }^{\text {g }}$	P.A. ${ }^{\text {h }}$	$\Delta M^{\text {i }}$	s.e. ${ }^{\text {j }}$	$N x^{\text {k }}$	$\operatorname{Sep} X^{1}$	s.e. ${ }^{\text {m }}$	EM^{n}	$\mathrm{N} y^{\text {o }}$	Sep Y^{p}	s.e. ${ }^{\text {a }}$	$\mathrm{EM}^{\text {r }}$
031231.7	$+514950$	0332301226	96092 22:36	9.40	X	46.6	135.6	0.17	0.01	2	46.6	0.7	0.5		\ldots
031229.0	+520606	0332301440	96092 22:37	12.77	Y	54.3	135.6	1.90	1	54.3
061433.8	+475758	0337900462	97085 02:41	11.67	Y	360.5	0.2	2.00			\ldots	\ldots		1	360.5		
085347.3	+512627	0342301425	$9703311: 35$	13.00	Y	85.1	160.2	1.09				\ldots		1	85.1		
102419.2	+471717	0343500226	$9718010: 47$	13.55	X	96.0	170.0	1.74		1	96.0	\ldots		
114436.5	+495152	0345400785	97073 13:31	13.05	Y	83.8	3.0	1.69				1	83.8	...	\ldots
121731.9	+470607	0345500642	97325 23:07	12.41	X	73.9	41.0	0.83	0.05	4	73.9	3.1	1.5	
143003.4	+473737	0347600015	$9700717: 59$	9.72	X	322.4	28.5	1.19	0.05	7	322.4	3.3	1.2
141819.7	$+521515$	0347800286	97174 01:57	12.46	X	47.5	129.4	1.16		1	47.5		\ldots		
155747.0	+472526	0349001040	$9619310: 33$	12.89	$X Y$	103.8	265.9	1.15	0.51	1	71.3	\ldots	...	4	75.4	3.8	1.9
160001.0	+472121	0349100660	97143 17:40	10.89	$X Y$	249.8	239.6	1.46	0.77	1	217.0			3	123.7	1.1	0.6
173852.3	+474444	0351400238	97120 22:06	9.99	X	68.8	136.7	0.24	0.00	2	68.8	0.1	0.1		
172343.7	+500708	0351600330	97294 06:15	12.92	$X Y$	398.5	277.9	0.21	0.10	22	287.4	4.3	0.9	10	-276.1	4.4	1.4
181435.3	+482727	0352901975	97129 09:49	13.10	X	112.1	136.0	0.54		1	112.1				...		
233029.8	+522424	0364901333	96222 13:48	11.81	X	137.6	33.2	1.90	0.00	2	137.6	27.7	19.6		\cdots
002031.0	+592930	0366500755	$9715916: 12$	12.96	Y	39.9	90.0	0.19	0.21		...			2	39.9	1.6	1.1
010833.6	+544344	0367300528	$9628209: 10$	12.07	X	98.5	8.3	0.90	0.22	7	98.5	5.3	2.0	
050602.4	+523232	0373400374	$9611400: 51$	13.13	$X Y$	235.9	196.9	0.28	0.27	15	176.1	5.8	1.5	13	156.9	4.6	1.3
050634.8	+523435	0373400788	$9611715: 01$	12.97	X	661.8	146.6	1.60	...	1	661.8				...		
050450.6	+525758	0373401210	$9622813: 44$	12.34	X	399.2	98.4	1.80	\ldots	1	399.2	\ldots			\ldots	\ldots	\ldots
065427.4	+535757	0376701120	97262 23:58	13.32	Y	358.5	105.0	1.62	\ldots	\ldots		1	358.5
093427.4	+553333	0381000961	96362 08:31	12.02	$X Y$	774.4	11.6	0.03	0.01	1	461.5	\ldots		2	621.9	2.3	1.6
115931.2	+553131	0383600201	96090 13:03	11.33	X	442.6	97.7	0.80	...	1	442.6	\ldots	\ldots		
140423.5	+554546	0385501150	97181 03:40	12.65	X	823.7	120.2	1.12	\ldots	1	823.7	...	\ldots	\ldots	\ldots	\ldots	\ldots
144115.1	$+531414$	0386000975	97240 02:31	12.88	X	96.4	164.0	1.79	\ldots	1	96.4	...	\ldots	\ldots	\ldots
143626.9	+585757	0386600032	97012 13:13	12.85	X	107.9	118.0	1.46	\ldots	1	107.9	\ldots	\ldots		\cdots	.	\ldots
143618.5	+584041	0386601334	97012 12:36	12.68	Y	187.1	118.0	1.54		1	187.1	.	
153735.8	+580607	0387501116	$9700914: 32$	13.23	Y	292.3	115.8	1.37			\ldots	.		1	292.3	.	
203524.7	+595555	0396200243	$9625318: 27$	12.88	Y	356.3	48.2	1.70	\ldots	\ldots	1	356.3	\ldots	
065233.1	+605253	0411000647	96231 08:29	11.95	X	488.7	125.8	1.60		1	488.7	..	\ldots		...	\ldots	
075706.0	+602627	0411300970	97254 15:09	12.48	$X Y$	698.9	82.2	1.33	0.00	1	527.0	...	\ldots	1	459.1	\ldots	
075504.1	+622728	0411700201	96340 12:23	12.23	$X Y$	1171.3	4.8	0.90	0.23	1	669.9	...		1	960.8	\ldots	
093502.2	+613030	0413600910	97311 22:42	13.32	X	108.3	17.2	0.16	0.00	2	108.3	0.2	0.2	\ldots
094346.3	$+671415$	0414200341	96108 06:26	13.32	X	698.1	32.1	1.70	...	1	698.1	\ldots	\ldots
120109.6	+614141	0415400880	97132 02:10	12.31	X	56.3	40.0	1.49	\ldots	1	56.3	\ldots
144627.6	+633838	0417600981	$9714312: 20$	10.80	Y	117.9	162.0	0.45	1	117.9	...	
151248.2	+614849	0418000935	96262 16:15	12.61	X	217.9	56.2	1.60		1	217.9			
182314.6	+643939	0422202265	96090 02:31	12.93	X	205.5	175.4	0.68	0.51	4	205.5	9.0	4.5	\cdots	\cdots	\ldots	\ldots
182314.6	+64 3939	0422202265	97053 21:03	12.93	$X Y$	204.0	83.3	1.83	0.54	2	161.8	5.9	4.1	3	124.3	2.0	1.1
072836.7	+692121	0436000976	97308 08:15	12.59	$X Y$	621.1	157.1	0.14	0.04	2	133.7	0.8	0.5	1	-606.6	\ldots	
072836.7	+692121	0436000976	97325 09:34	12.59	$X Y$	612.2	305.3	0.16	0.17	1	-293.4	4	537.3	7.2	3.6
094638.2	+673233	0438301828	96054 12:35	11.03	X	78.9	78.4	0.59	\ldots	1	78.9	\cdots	\ldots	\ldots
110815.4	+722930	0438800309	$9718514: 38$	12.80	Y	90.1	71.0	0.67	0.01		\cdots	\ldots	...	2	90.1	0.0	0.0
135334.1	+693233	0440301512	$9701601: 39$	13.98	X	190.6	6.1	0.64	...	1	190.6	...	\ldots
133820.9	+700404	0440500149	97094 16:42	11.75	X	79.6	11.1	1.42	\ldots	1	79.6	\ldots
133820.9	+700404	0440500149	97127 18:28	11.75	X	212.7	167.5	1.54	\ldots	1	212.7	\ldots	\ldots	\cdots	\ldots	...	\ldots
212905.5	+732930	0447300170	96356 03:09	13.61	Y	495.9	48.0	1.55	\ldots	1	495.9	\ldots	\ldots
064828.3	+792324	0453400416	$9715313: 55$	12.90	Y	306.3	35.9	0.97	0.55	...	\ldots	\ldots	\ldots	3	306.3	3.2	1.8
000137.2	-00 4444	0466300554	97183 22:05	12.88	X	160.0	66.7	1.64	...	1	160.0	...	\ldots	
002905.8	-015757	0466500441	$9635118: 15$	13.86	X	42.4	146.9	0.48	\ldots	1	42.4	...	\ldots	\ldots	\ldots
010941.0	-02 1617	0468101078	97036 02:09	13.02	X	101.8	164.0	1.68		1	101.8	\ldots	\ldots	.	\cdots	...	\ldots
020617.8	-00 2727	0468901162	96282 17:25	12.67	$X Y$	298.4	246.9	1.85	0.00	1	92.2	1	283.8	\ldots	\ldots
053513.4	-053031	0477400842	$9710918: 56$	11.82	X	95.0	16.9	1.71	...	1	95.0	\ldots	...
053540.6	-05 2727	0477400888	97103 06:29	12.43	X	113.4	8.1	1.68	\ldots	1	113.4	\ldots	\ldots	\ldots	...	\ldots	\ldots
065227.8	-00 3232	0480000537	$9723600: 57$	10.44	$X Y$	83.3	221.3	0.03	0.01	1	69.1	\ldots	\ldots	3	46.5	0.8	0.5
064432.2	-020405	0480300476	$9711610: 47$	11.25	Y	172.4	15.5	1.11	1	172.4
084618.7	-00 0505	0486401078	$9713910: 42$	13.06	X	44.3	17.5	0.43	...	1	44.3	\ldots	\ldots	\cdots
121408.4	-013132	0494000380	$9717821: 57$	13.28	X	506.2	22.5	1.36		1	506.2	...	\ldots	\ldots	\ldots	\cdots	\ldots
123837.4	-04 0000	0495100818	97192 02:14	12.57	X	178.4	27.1	1.76		1	178.4	.			\ldots	\ldots	\ldots
125622.8	-05 2424	0495600856	$9611314: 35$	10.11	X	66.9	7.0	0.10	0.00	2	66.9	0.1	0.1	\cdots	\cdots	\cdots	\cdots

TABLE 2
(Continued)

R.A. ${ }^{\text {a }}$	Decl. ${ }^{\text {b }}$	GSC No. ${ }^{\text {c }}$	Epoch ${ }^{\text {d }}$	Mag ${ }^{\text {e }}$	$X Y^{\text {f }}$	Sep ${ }^{\text {g }}$	P.A. ${ }^{\text {b }}$	$\Delta M^{\text {i }}$	s.e. ${ }^{\text {j }}$	$N x^{\text {k }}$	$\operatorname{Sep} X^{1}$	s.e. ${ }^{\text {m }}$	EM ${ }^{\text {n }}$	$\mathrm{N} y^{\text {o }}$	$\operatorname{Sep} Y^{\text {p }}$	s.e. ${ }^{\text {a }}$	EM ${ }^{\text {r }}$
172251.4	-00 0909	0506700354	97128 01:21	13.80	X	148.3	152.6	0.56	\ldots	1	148.3	\ldots	\ldots
093221.4	-110304	0546400241	$9612510: 60$	13.31	Y	154.1	105.7	0.70		\ldots	\ldots	\ldots	\ldots	1	154.1		
124712.2	-08 0303	0553500097	96049 12:53	12.95	Y	389.6	115.5	2.00						1	389.6		
142312.5	-145353	0557400661	97239 10:13	12.45	X	780.1	109.2	1.22		1	780.1						
145001.0	-09 5555	0558200775	97037 16:35	13.73	XY	190.3	77.8	0.28	0.09	2	159.3	2.8	1.9	1	104.2		
181947.3	-09 1718	0567700530	$9620713: 56$	13.31	Y	423.4	112.3	0.90	0.14		...			2	423.4	4.5	3.2
181831.0	-13 4343	0568900663	97096 04:20	11.03	Y	50.4	84.0	0.04	0.06					2	50.4	0.8	0.6
202106.7	-1429 29	0575301286	96107 04:48	13.15	Y	230.1	77.4	1.40						1	230.1
202019.0	-143838	0575301649	96118 10:03	12.33	X	125.5	76.4	1.70	0.28	2	125.5	5.5	3.9	\ldots	\ldots
205051.6	-08 1515	0575700162	$9718504: 31$	13.62	X	450.3	149.5	1.97		1	450.3		\ldots	\ldots	\ldots
204403.4	-10 3738	0576001295	$9628200: 56$	13.01	$X Y$	331.2	28.0	2.55	0.00	1	212.6	\ldots	...	1	254.0		
213102.9	-10 0506	0579000312	97155 20:23	10.18	Y	99.0	158.0	0.19	0.12			\ldots		4	99.0	10.9	5.4
232536.0	-115556	0582500782	$9620917: 37$	12.09	$X Y$	212.3	34.7	2.35	0.00	1	162.0	...	\ldots	1	137.2		
044205.8	-20 3839	0589801162	97093 17:53	13.81	Y	160.9	108.2	0.37			...	\ldots	...	1	160.9		
045230.7	-182223	0590300498	97096 22:47	12.11	$X Y$	281.1	119.7	0.33	0.00	1	-275.7	\ldots	\ldots	1	54.6		
064600.2	-164545	0594902700	96247 02:04	11.88	X	114.2	161.4	1.60	...	1	114.2	...	\ldots				
074749.7	-190405	0598900943	97283 23:17	13.10	Y	109.5	93.2	1.85	\ldots	\ldots	...	1	109.5	\ldots	\ldots
092956.2	-201516	0603800533	$9712112: 01$	12.20	Y	505.1	169.8	1.80	\ldots		\ldots	\ldots	\ldots	1	505.1	...	
101638.4	-20 5353	0607200013	97192 03:45	13.78	Y	103.4	132.5	1.69			\ldots	\ldots		1	103.4	\ldots	
120004.8	-191212	0609700588	$9620818: 26$	11.90	$X Y$	147.7	275.6	1.55	0.00	1	131.2	\ldots	...	1	67.8	...	
131251.6	-1934 35	0611601039	96355 17:34	13.66	Y	194.6	107.6	0.84	\ldots	\ldots	1	194.6	\ldots	
150029.3	-1955 56	0617601080	$9711712: 13$	13.29	X	696.1	29.1	1.65	\ldots	1	696.1	\ldots			
145856.6	-195758	0617601140	97117 11:46	12.68	$X Y$	90.1	354.2	0.51	0.20	39	73.9	5.4	0.9	2	51.5	4.9	3.5
185048.5	-21 1112	0629301074	97307 21:27	11.20	Y	231.2	84.1	2.05		1	231.2		
193621.1	-154848	0629902113	96142 01:13	13.10	Y	172.1	99.3	1.00			\ldots	\ldots		1	172.1		
195111.0	-20 2324	0632001943	$9622611: 32$	12.49	Y	295.4	166.4	1.40	..	\ldots	\ldots	\ldots		1	295.4		
202855.2	-192829	0633701680	97289 01:11	13.79	Y	111.0	70.0	0.73	0.00	\ldots	\ldots	\ldots		2	111.0	0.1	0.0
210456.9	-172829	0635000102	97310 05:26	13.01	$X Y$	126.3	45.9	0.47	0.00	1	108.2	\ldots		1	65.1		
212343.7	-1743 43	0636400104	$9627112: 25$	13.19	X	42.9	163.4	0.18		1	42.9	\ldots			...	\ldots	
220404.3	-20 2222	0638300154	97302 04:25	11.94	$X Y$	823.5	75.3	0.63	0.00	1	-814.1	...		1	124.4		
220643.9	-20 2626	0638300719	97247 07:51	13.90	Y	311.2	41.0	0.43			...	\cdots		1	311.2		
003944.9	-23 5556	0642100778	$9629404: 43$	10.39	X	61.0	119.9	0.75	0.06	4	61.0	1.7	0.9	\ldots	...		
014301.0	-25 2626	0642901711	97290 03:16	12.89	X	407.4	82.4	1.81	...	1	407.4			..	\ldots		
102050.4	-29 3737	0663101217	96186 17:03	11.88	X	280.7	40.7	1.30		1	280.7	\ldots			
103806.0	-27 4545	0664100298	96167 09:57	12.80	X	34.7	27.3	0.03	\ldots	1	34.7	\ldots	\ldots	\cdots	...	\ldots	
154725.4	-291010	0679001400	$9726500: 55$	10.43	Y	42.4	107.7	0.60	0.11	...	\ldots	\ldots	...	2	42.4	1.0	0.7
162600.7	-2400 01	0679400377	$9715811: 52$	12.74	X	300.6	172.2	0.59	...	1	300.6	\ldots			
174603.1	-28 5657	0684000326	$9725712: 39$	11.31	Y	85.3	90.9	2.19	\ldots			...	\ldots	1	85.3	...	
180426.4	-29 4546	0685404139	96250 03:17	12.52	X	500.1	80.0	1.20	\ldots	1	500.1	\ldots			...		
183944.9	-22 4848	0685801898	$9620901: 55$	11.91	X	102.3	176.3	1.70	\ldots	1	102.3	\ldots	\ldots	...	\ldots	\ldots	
184005.5	-23 2223	0685802555	$9622013: 51$	11.59	X	114.2	85.9	1.70	\ldots	1	114.2	\ldots		
184228.1	-23 2324	0685900757	$9621204: 51$	12.97	X	470.0	85.4	1.30	\ldots	1	470.0	\ldots	...	\cdots	\ldots		
184207.7	-230707	0685901443	96212 06:53	11.18	$X Y$	280.6	27.1	0.28	0.06	2	147.6	1.6	1.2	2	238.7	3.5	2.5
185136.2	-2234 34	0686000627	$9606101: 55$	12.62	X	31.4	175.0	0.35	...	1	31.4	\ldots	\ldots	\ldots	
185917.3	-22 5253	0687300197	$9618004: 25$	11.68	Y	69.7	83.9	0.90	0.17	\ldots		3	69.7	2.1	1.2
222808.4	-2709 09	0696500288	$9731508: 28$	11.83	X	98.0	154.9	0.07	0.05	11	98.0	4.1	1.2		
024136.0	-33 5758	0701400745	$9723613: 26$	12.48	Y	355.5	8.3	1.51		1	355.5		
024047.0	-341818	0701400911	96157 02:45	12.81	Y	528.4	34.0	0.33	0.25			\ldots	\ldots	3	528.4	6.1	3.5
033416.6	-35 2121	0702700428	97320 12:46	12.33	$X Y$	330.9	315.7	0.14	0.00	1	305.4	\ldots	...	1	127.5	...	
032441.0	-36 3232	0702700523	97267 16:33	13.39	Y	88.4	95.0	1.70	\ldots	1	88.4	...	
033734.3	-35 2424	0703400573	$9710603: 59$	13.02	X	166.2	52.0	1.90	\ldots	1	166.2	\ldots	\ldots	\ldots	...	\ldots	
054459.8	-32 3536	0706100563	97286 01:12	13.35	X	129.5	18.7	0.86	\ldots	1	129.5	...	\ldots	\ldots	\cdots	...	
071230.2	-35 4747	0711500344	$9625517: 24$	12.88	Y	216.7	72.0	1.70	\ldots	\ldots	...	\ldots	...	1	216.7	\ldots	
101637.4	-33 4343	0718701036	$9716414: 13$	12.11	X	152.3	28.9	1.27	\cdots	1	152.3	...	\ldots		
134009.4	-31 2727	0726600045	97207 06:49	13.82	Y	538.6	100.0	1.58	\ldots	1	538.6	...	
155029.0	-33 3031	0733201547	$9623614: 15$	13.13	X	352.5	1.3	1.10		1	352.5	
155733.1	-362021	0734100981	$9626102: 54$	11.55	X	376.5	107.6	1.70	\ldots	1	376.5	\ldots	...	\cdots	...	\ldots	\ldots
174956.2	-371920	0738900964	$9629813: 21$	11.66	Y	101.7	101.7	0.97	0.12	\ldots	\ldots	11	101.7	2.8	0.9
184347.5	-32 2122	0741100319	$9718313: 40$	12.07	Y	75.4	5.0	1.89	...	\ldots	\ldots	...		1	75.4
225942.7	-345454	0750800195	$9729914: 37$	12.43	Y	380.4	40.0	1.84	\ldots	\ldots	\ldots	\ldots	\ldots	1	380.4	...	\ldots

TABLE 2
(Continued)

R.A. ${ }^{\text {a }}$	Decl. ${ }^{\text {b }}$	GSC No. ${ }^{\text {c }}$	Epoch ${ }^{\text {d }}$	Mag ${ }^{\text {e }}$	$X Y^{i}$	Sep ${ }^{\text {g }}$	P.A. ${ }^{\text {b }}$	ΔM^{i}	s.e. ${ }^{\text {j }}$	$\mathrm{N} \mathrm{x}^{\mathrm{k}}$	Sep X^{1}	s.e. ${ }^{\text {m }}$	EM ${ }^{\text {n }}$	$\mathrm{N} \mathrm{y}^{\circ}$	Sep $Y^{\text {p }}$	s.e. ${ }^{9}$	EM ${ }^{\text {r }}$
225931.2	-34 4545	0750800199	97319 17:05	13.14	X	785.4	131.0	1.85	\ldots	1	785.4	\ldots	
015816.1	-44 4748	0754901036	$9611410: 51$	11.46	X	250.6	2.1	1.70		1	250.6						
032707.9	-38 2728	0756801070	96192 15:56	12.65	X	844.9	142.8	0.80		1	844.9						
123542.7	-40 0404	0776200070	$9719412: 32$	13.53	Y	301.0	102.0	1.95						1	301.0		
132544.2	-43 1111	0779900062	97223 05:23	10.24	Y	79.7	121.6	1.97	0.00					2	79.7	0.0	0.0
160857.4	-385253	0785100115	97185 17:22	12.60	X	141.7	58.9	1.87		1	141.7						
165445.8	-39 4949	0787200030	96172 14:04	12.14	X	499.7	35.9	1.50		1	499.7						
165743.2	-40 1414	0787201174	$9616314: 09$	12.20	X	76.7	108.3	0.42	0.20	3	76.7	0.6	0.3	..			
165402.4	-39 4343	0787201333	$9614116: 47$	12.57	X	128.7	160.5	1.40		1	128.7					\ldots	
003926.6	-512425	0803000624	96212 16:16	13.46	Y	225.4	104.4	1.90						1	225.4		
004822.6	-52 0203	0803700296	97157 00:50	12.00	Y	171.0	158.5	1.95				.		1	171.0		
005004.3	-515858	0803700322	97177 09:25	13.46	Y	236.2	69.7	1.82		\ldots	\ldots	...		1	236.2		
054618.0	-50 5960	0809900313	97174 22:09	12.71	Y	867.3	0.9	1.19						1	867.3		
073228.3	-50 2829	0814100740	97182 22:36	11.83	Y	72.9	168.2	2.03			\cdots			1	72.9	..	
073453.8	-50 2626	0814100928	97183 01:49	10.68	X	46.1	78.2	0.75	0.07	5	46.1	0.8	0.4		...	\ldots	
132616.6	-474747	0825201761	$9618106: 55$	10.38	XY	485.9	152.7	3.10	0.00	1	273.7			1	401.5	\ldots	
132616.6	-47 4747	0825201761	$9715506: 47$	10.38	Y	446.2	76.3	2.32	0.07		4	446.2	1.2	0.6
172946.8	-463738	0834201822	97250 22:04	10.69	X	174.1	179.8	1.73	...	1	174.1	\ldots	\ldots	\ldots	
205105.5	-515354	0842000355	97072 21:59	13.40	X	509.2	139.1	0.41		1	509.2						
174006.0	-53 3030	0872901617	96066 23:17	11.89	Y	41.7	87.0	0.10				\ldots		1	41.7	\ldots	
174107.4	-535353	0872902390	96275 23:46	12.17	X	116.8	98.5	1.90	...	1	116.8	
062755.9	-64 0607	0890200744	97128 10:57	9.76	X	445.8	47.2	0.90	0.03	2	445.8	0.6	0.5	\ldots	
111533.8	-61 1818	0895901343	$9709506: 36$	9.95	Y	153.1	30.4	0.16						1	153.1		
111604.3	-61 3131	0895901505	97224 20:38	10.93	X	58.6	156.2	1.56	0.27	10	58.6	7.9	2.5	\ldots	
111604.3	-61 3131	0895901505	97237 20:56	10.93	X	72.9	165.4	1.14	0.16	2	72.9	3.3	2.3	...	\ldots	...	
111600.5	-61 1112	0895901939	97063 16:50	9.54	X	59.6	86.6	0.33	0.04	3	59.6	1.1	0.6				
111600.5	-61 1112	0895901939	97063 19:06	9.54	X	57.8	78.2	0.34	0.01	2	57.8	1.3	0.9	\ldots	\ldots	...	
111631.2	-61 0001	0895902197	97129 02:26	10.89	X	138.9	55.0	2.15	...	1	138.9			..	\ldots	\ldots	
002700.0	-72 1011	0913701767	96282 14:16	12.79	Y	448.5	16.0	1.80			...			1	448.5		
002248.7	-72 0506	0913703769	96271 19:04	12.96	Y	421.3	178.5	1.00	...	\cdots	\cdots	1	421.3	\ldots	
010629.3	-72 2222	0913902189	96218 15:17	12.06	X	101.5	113.1	1.80		1	101.5				...		
010843.2	-72 0708	0913902192	$9622318: 43$	11.75	Y	170.3	118.8	0.70	0.10					3	170.3	1.2	0.7
001857.1	-74 0607	0914001079	96164 02:03	10.02	X	150.6	136.5	0.02	...	1	150.6	\ldots	
050326.2	-68 1717	0916101097	96334 01:39	12.29	X	395.0	170.0	1.57	...	1	395.0	.		.	\ldots	\ldots	
061906.0	-71 2526	0917200529	96316 07:28	12.80	X	239.2	135.0	1.50		1	239.2					...	
153829.3	-71 4344	0926800932	96278 01:25	12.23	XY	136.8	5.8	0.06	0.00	1	-83.6	...		1	108.3	...	\ldots
215917.8	-69 5657	0932700041	$9627512: 51$	13.63	X	886.7	129.5	1.87		1	886.7	
003443.7	+85 2222	3788900104	96221 05:14	11.48	XY	263.1	260.4	1.03	0.05	1	-231.9	3	124.3	4.0	2.3

${ }^{\text {a }}$ Right ascension (in units of hours, minutes, and seconds), equator and equinox, J2000.0, GSC position.
${ }^{\mathrm{b}}$ Declination (in units of degrees, arcminutes, and arcseconds), equator and equinox, J2000.0, GSC position.
${ }^{\mathrm{c}}$ Guide Star Catalog number.
${ }^{d}$ Mean epoch of observation: year, day of year, hour and minute.
${ }^{e}$ Magnitude from the GSC (photographic V in northern hemisphere, J in southern hemisphere; see GSC references).
${ }^{\mathrm{f}}$ Symbol for the FGS coordinate of duplicity detection. X : X-only duplicity. Y : Y-only duplicity. $X Y$: duplicity in both X and Y.
${ }^{g}$ Separation in units of milliarcseconds, with two definitions. If a single coordinate, the separation is only the projection of the separation of the double onto the FGS coordinate of observation. If a two-coordinate observation, it is the angular separation of the components. The scale errors of the separations are estimated to be at the level of a few parts per thousand.
${ }^{h}$ Position angle with two definitions. For one-coordinate observations, it is the position angle (equatorial coordinates) of the FGS coordinate at the time of observation $\left(0^{\circ}-180^{\circ}\right)$. For a two-coordinate observation, it is the traditional double-star position angle, the angle from north to east of the fainter component relative to the brighter component.
${ }^{\text {i }}$ Magnitude difference between the components as computed from the ratio of the amplitudes of the component S-curves. The bandpass of the FGSs in guidance is centered near the V photometric band but spans spectra that range from the U to the R bands, the mid-3000s to 7000s in angstrom units.
${ }^{j}$ Standard error of the observations that formed the delta magnitude mean if more than one observation.
${ }^{\text {k }}$ Number of observations in the X coordinate combined to form the entries in the table line.
${ }^{1}$ Mean of the X separations, or the X separation if only one observation in units of milliarcseconds.
${ }^{m}$ Standard error of the observations that formed the X in units of milliarcseconds.
${ }^{n}$ Error of the mean separation X in units of milliarcseconds.
${ }^{\circ}$ Number of observations in the Y coordinate combined to form the entries in the table line.
${ }^{\mathrm{p}}$ Mean of the Y separations, or the Y separation if only one observation in units of milliarcseconds.
${ }^{q}$ Standard error of the observations that formed the Y mean in units of milliarcseconds.
${ }^{r}$ Error of the mean separation in Y in units of milliarcseconds.

Fig. 4.-Histograms of separation and Δm for the selected doubles in Table 2. The histogram of the angular separations of stars is similar to other catalogs, with the general form of a (1/separation) function.

5. FOLLOW-UP OBSERVATIONS

Many of the pairs discovered by the FGS acquisitions are expected to be middle main-sequence objects and thus meet the physical separation requirements that would allow mass determination on a timescale on the order of a decade if followed with ground-based spectroscopy and by ground- or space-based astrometric instruments. For example, a 9th magnitude double, with both components nominal main-sequence G stars of 10th magnitude, would be at 100 pc . A nearmaximum separation of 50 mas in a circular, highly inclined orbit would be due to a semimajor relative orbital axis of 5 AU. The pair would have an orbital period of 7.9 yr and a relative radial velocity half-amplitude of $19 \mathrm{~km} \mathrm{~s}^{-1}$. Distance, luminosity, and individual masses can be determined without a parallax from a double-lined spectroscopic binary and the relative astrometric orbit. The FGS acquisition doubles could be screened for the best prospects for mass determination by taking spectra that could distinguish the relatively nearer main-
sequence stars from the giants and also by proper motions where available. The separation limits for FGS double-star detection from walkdown data could be clarified by HST TRANS mode astrometry observations, which would help further define a candidate list.

6. CONCLUSION

The FGS walkdown observations survey stars for duplicity, and these stars are generally closer and fainter than in any previous surveys. Double-star separation and magnitude statistics at any level have relevance to star formation and evolution. The statistics of close double stars in the magnitude range $9<V<14$ are of interest in the design of guiding systems for future large space-based telescopes and interferometers (e.g., the Next Generation Space Telescope and Space Interferometry Mission).

A discovery rate of 5\% doubles occurs if the duplicity criteria are set at a level that yields certain duplicity for nearly all of the selected cases and that yields about 130 discoveries per year from the guidance data. Undoubtedly, many more of the stars are double and lie nearer the limits of detection. Criteria that would yield a 10% duplicity rate produces candidates with a high probability of duplicity. Observations on a test set of candidates with higher spatial resolution and larger S / N would be needed to check this estimate.

A master catalog is kept with all walkdowns and their fitting parameters, GSC numbers, coordinates, and all relevant telescope parameters such as roll, filter, FGS servo K-factors, etc. The catalog can be searched with any significance criterion for duplicity. Subcatalogs of double stars for various criteria will be generated. Data will be available electronically. ${ }^{1}$ The catalogs of all solutions for duplicity can be checked for the presence of a specific guide-star number and the significance level found for the solutions for the presence of a double.

This work has been based on observations with the NASA/ ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

This study was supported under Archive Proposal 5811 and also the STScI Science and Engineering Systems Division (SESD). We thank Roger Doxsey, head of SESD, for his recognition of the value of this study with respect to the FGS guiding operations and astronomical research. Xuyong Liu of the SESD Engineering Team provided assistance in the extraction of data via OMS.

[^0]
REFERENCES

Benedict, G. F., et al. 1992, PASP, 104, 957
Bradley, A., Abramowicz-Reed, L., Story, D., Benedict, B., \& Jefferys, W. 1991, PASP, 103, 317
Hershey, J. L. 1992, PASP, 104, 592
Hershey, J. L., \& Bély, P. Y. 1994, PASP, 106, 542
Hogeveen, S. J. 1990, Ap\&SS, 173, 315
Holfeltz, S. T. 1996, FGS Instrument Handbook, Version 6.0 (Baltimore: STScI)

Jenkner, H., Lasker, B. M., Sturch, C. R., McLean, B. J., Shara, M. M., \& Russell, J. L. 1990, AJ, 1613, 2081

Lasker, B. M., Sturch, C. R., McLean, B. J., Russell, J. L., Jenkner, H., \& Shara, M. M. 1990, AJ, 1613, 2019

Lattanzi, M. G., et al. 1994, ApJ, 427, L21
Russell, J. L., Lasker, B. M., McLean, B. J., Sturch, C. R., \& Jenkner, H. 1990, AJ, 1613, 2059

Schneider, G. 1985, Ph.D. thesis, Univ. Florida

[^0]: ${ }^{1}$ Available at http://nicmosis.as.arizona.edu:8000/pub/gsdoubles.html, which is maintained by Steward Observatory, University of Arizona.

