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2 Scientific, Technical and Management

2.1 Project Summary

Accretion-related and mass-loss activity are some of the most spectacular signatures of stellar
youth and are tied to the magnetic field geometry of the pre-Main Sequence stars. Direct
magnetic field mapping is resource intensive and is not easily extensible to large numbers of
stars, or those with smaller magnetic fields. However, plasma associated with accretion can
be mapped as a function of stellar latitude using photoelectric absorption data from archival
X-ray observations if the system inclination and disk or remnant envelope contributions to
the absorption are known. Inclination data can be derived either from HST coronagraphic
imagery of the disk, or jet imagery and spectroscopy extracted from HST and Goddard Fabry-
Perot data. The disk and envelope contribution to N(H) can be estimated from Monte-Carlo
Radiative Transfer modeling of the IR spectral energy distribution. A pilot study using these
techniques has found a peak in photoelectric absorption near 50 degrees stellar latitude (40
degrees inclination from pole-on) for both 2-2.5 M!Herbig Ae stars and a small sample of
classical T Tauri stars. We propose extending our multi-wavelength approach to a larger
and statistically significant sample of stars, including disks with developing central cavities,
the transitional disks, to determine whether the pilot study results are typical, and to search
for changes in the accretion geometry as a function of stellar mass, age, and disk clearing.

2.2 Problem Statement and Relevance to NASA’s Strategic Goals

NASA has identified “learning how the Sun’s family of planets and minor bodies originated
and evolved” (sub-Goal 3C.1) and “understanding how individual stars form and how those
processes ultimately affect the formation of planetary systems” (sub-Goal 3D.3) as important
strategic goals for the Agency in its 2006 Strategic Plan11. Both of these goals not only
relate to placing our planetary system into context, but also contribute to understanding the
frequency and diversity of exo-planetary systems (Goal 3D.4).

Excess light, enhanced emission features, and outlfow features are some of the most
flamboyant signatures of stellar youth. For young, late-type stars, material accretes onto the
star from the circumstellar disk along magnetic field lines. The magnetic coupling between
star and disk and the point at which it ends ultimately establishes how rapidly the star
rotates, and sets the Main Sequence FUV and X-ray activity level of the star. In turn the
activity level has implications both for survival of terrestrial planet atmospheres and the
habitability of the corresponding planetary surfaces (Engle et al. 2009; Guinan et al. 2009).
Before the protoplanetary disk clears, accretion-related activity and associated FUV and
X-ray fluxes drive chemistry in the disk, and may be important in the removal of the disk
gas (Gorti & Hollenbach 2009; Bergin et al. 2007).

The detailed geometry of accretion and mass loss from the star are still uncertain for
many PMS stars (Gómez de Castro 2009). In particular, the latitude range of the accretion
footprint is also important in establishing, for T Tauri stars, which magnetic field com-
ponents are implicated in accretion. Jets and bipolar outflows, which are believed to be
magnetocentrifugally launched from either the star or the inner 1-1.5 AU of the disk (Tatulli

1www1.nasa.gov/pdf/142302main 2006 NASA Strategic P lan.pdf
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et al. 2007) are some of the most conspicuous signatures of mass loss from the star. While
jet activity is most conspicuous in young stars, it has been detected in older T Tauri and
Herbig Ae stars as late as 5-7 Myr (Cox et al. 2005; Stecklum et al. 2009), but not in
any of the recently identified transitional disks, even those, such as GM Aur, which still are
accreting at rates ≥10−8 M! yr−1. The lack of a correlation with accretion rate suggests
that changes in the magnetic field strength or geometry may occur as the disk begins to
clear. The development of central cavities, which are present in some systems t by 2 Myr,
and is more common by 5 Myr, is consistent with recent age estimates for the formation of
massive planets like Saturn. If we are to understand the environment of young, gas giant
planets we need to know how the coupling between the disk and star change as a function
of stellar mass, age, stellar rotation, and degree of central disk clearing.

2.3 Background

Over the past 3 decades the combination of X-ray emission and flaring, detection of large-
scale, bipolar outflows, broad optical and UV emission lines, and measurement of kG mag-
netic fields on many T Tauri stars has prompted a number of authors, beginning with Uchida
& Shibata (1984) to consider that the circumstellar disks associated with young stars are
truncated by the stellar magnetic field near the co-rotation radius, and plasma is then fun-
neled at free-fall velocities toward the star along magnetic field lines. The observation that
optical and NIR line profiles with associated red-shifted absorption features or profile asym-
metries suggestive of infalling material are observed in a large fraction of classical T Tauri
spectra, and when synoptic observations are made, are routinely present (Edwards et al.
1994, 1996; Fischer et al. 2008) suggested that the field lines connect to the star at suffi-
ciently “high” latitude that they are not routinely occulted by the circumstellar disk. Early
modeling efforts used dipole field geometries, with the magnetic axis coincident with the
stellar rotation axis. More recent efforts based on tomographic modeling of starspots and
polarization data have considered more complex field geometries for T Tauri stars, including
dipole components which are offset from the stellar rotation axis (Bouvier et al. 2007; Do-
nati et al. 2008; Gregory et al. 2007; Strassmeier et al. 2005). The few stars with detailed
modeling have suggested that it is the dipole field component that threads the disk at or near
the co-rotation radius, and thus should be implicated in accretion, while the more compact
field lines of the higher order multipole components may be associated with coronal activity.
While extremely valuable, these tomographic studies are sufficiently time and data intensive
that they are not easily extensible to large surveys of PMS stars in the near term. More-
over, while accretion-related activity is now known for both higher mass (2-2.5M! Herbig Ae
stars; Devine et al. 2000; Wassell et al. 2006; Grady et al. 2004; Grady et al. 2009a, b) and
for lower mass brown dwarfs (Mohanty et al. 2005; Whelan et al. 2009 ), these stars have
weaker magnetic fields, typically ∼ a few hundred Gauss (Wade et al. 2007; Hubrig et al.
2007; 2009; Reiners et al. 2009;Alecian et al. 2008) making them less amenable to detailed
tomographic studies. What is needed is an alternate set of accretion signatures which can be
tracked over a wider range of central object mass, luminosity, and age to map the coupling
between star and disk, accretion and mass loss.
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2.3.1 An Alternate Approach Which is Extensible to A Larger Number of Stars

Fortunately, there are other accretion signatures which are detectable at other wavelengths
which can be used to probe the accretion geometry. At X-ray energies, emission from the
accretion shock at or near the stellar photosphere is produced by free-falling plasma with
velocities sufficiently high to produce soft X-ray emission. If other infalling plasma lies
between the star and the observer, it can absorb the soft X-rays through photoelectric
absorption, which can be detected if a sufficiently large column of overlying material is in
the line of sight. Güdel et al. (2008) interpret excess photoelectric absorption in the spectrum
of DG Tau A as arising from such accretion funnels. An alternate opacity source can be
provided by any wind or outflow launched from the star. Rorbrade & Schmitt (2007) note
that for pole-on systems like RU Lup, where a bipolar outflow is expected to be in the line of
sight, or for systems driving a massive, wide-angle wind, the absorbing column is consistent
with the expected mass loss rate.

These two, distinct models have different geometrical implications: a wide angle wind
would be expected to be detectable via excess absorption for any inclination where the disk
doesn’t obscure the star. Absorption via a collimated outflow (e.g. jet) would be expected
to be preferentially observed for inclinations where the jet is in the line of sight (e.g. low
inclinations from pole-on) The photoelectric absorption should also correlate with mass loss
rate from the system for both mass loss geometries. In contrast, photoelectric absorption
due to accretion funnels should be preferentially detected at intermediate inclinations, while
a soft X-ray emission excess should be seen at inclinations where the funnel is not in the line
of sight. Identifying photoelectric absorption due to these, competing mechanisms requires
a suite of stars with known foreground extinction, and where the amount of circumstellar
absorption can be independently estimated from knowledge both of the disk and/or any
remnant infalling envelope and how we view the star (system inclination).

These data are best derived with different observation techniques and with different in-
struments. For example, extinction data are traditionally measured in the optical as long
as the star is optically detected (Hartigan et al. 1995) but can be derived from moderate
resolution NIR or high resolution mid-IR spectra covering water and CO2 ice features and
the 9.7µm silicate features when the star is not optically visible (Terada et al. 2007), as can
occur for viewing geometries where the circumstellar disk occults the star. Such data are
now available as a result of IRTF/SPEX and Spitzer/IRS observations. System inclination
constraints can be derived from millimeter and sub-millimeter interferometry of circumstel-
lar disks, or from direct (high inclinations i∼80-90◦) or coronagraphic ( lower inclinations,
0≤i≤75◦) observations of disks in scattered-light such as have been produced by HST. For
disks which are small or which are shadowed by material lying close to the star and thus dark
in scattered-light, multi-epoch observations of jet proper motion and spectral measurements
of radial velocities can yield disk inclinations, if we assume that the jet is orthogonal to the
disk, and traces the stellar rotation axis. This is true of the jets imaged in the course of HST
coronagraphic imaging of the disks. High spatial resolution jet observations are available
for a number of T Tauri stars from HST direct imaging, while high contrast jet data at
lower spatial resolution have been routinely obtained using the Goddard Fabry-Perot at the
Apache Point Observatory 3.5m telescope. The availability of IR data, such as that obtained
with Spitzer and soon to be obtained with Herschel and SOFIA, in tandem with older data
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means that the IR SED can be fit with minimal degeneracy using the inclination data, and
disk size or surface brightness data using state-of-the-art Monte Carlo Radiative Transfer
Codes. In turn, such codes can predict the line-of-sight extinction due to the disk and any
remnant envelope. We illustrate the power of these techniques for diagnosing the source of
the soft X-ray absorption excess for the Herbig Ae star MWC 480.

2.3.2 An Intermediate-Mass Worked Example: MWC 480

The Herbig Ae star MWC 480 was the first Herbig Ae star to have its disk spatially resolved
using millimeter interferometry (Mannings et al. 1997), and has subsequently been well-
studied from FUV through mid-IR wavelengths. The star is variable, but lightly reddened
(E(B-V)=0.02-0.09 using A3V and photometry from Beskrovnaya & Pogodin (2004)). In the
FUV, the photosphere is not detected by FUSE but the accretion luminosity is visible down
to 1000 Å, again indicating modest foreground selective extinction. The line-of-sight N(H2)
is comparable to that of AB Aur (Roberge et al. 2001) and is insufficient to account for
the N(H). A Chandra ACIS-S observation from 2008 April was unexpectedly faint, resulting
in 130 counts in 10 ks, with a CCD resolution spectrum above 0.7 keV consistent with
LX=2x1029 erg/s, typical of older, accreting Herbig Ae stars (fig. 1, Grady et al. 2009b).
However, the photoelectric absorption N(H)=0.57x1022 cm−2 was a factor of between 9 and
40 times more than expected based on foreground extinction, that expected through the
disk based on the SED and scattered-light imagery (AV =0.415 for i=38◦ Grady et al. 2009b
using the SED of Sitko et al. (2008)) or the measured N(H2).

Having excluded absorption by dust or molecular gas, the remaining option is atomic gas
or plasma. For MWC 480 the measured N(H) corresponds to plasma with a basal density
of a few x10−10 cm−3, consistent with detection of O III] emission in IUE SWP 53929 and
with the suspected presence of Si III] emission in the lone saturated portion of the same
spectrum. If associated with mass loss, the column corresponds roughly to a mass loss rate
of ∼5x10−9M! yr−1 which is plausible in terms of the FUV accretion luminosity. While
MWC 480 drives a jet (Stecklum et al. 2009), at i=38◦ the bulk of the jet is not in the line
of sight. The origin of the excess absorption can be diagnosed by comparing MWC 480 with
other Herbig Ae stars, including those which also drive jets (Devine et al. 2000; Wassell et
al. 2006;Grady et al. 2004). Neither HD 163296 nor HD 104237 shows a large elevation in
N(H) compared to that predicted from the optical extinction data, and in particular, the
effect is not seen in the case of the i=18◦ HD 104237, where it should be most conspicuous.
This rules out a jet origin for the elevated N(H). Moreover, AB Aur,, HD 163296, and HD
104237 all have higher accretion rates than MWC 480, which should result in elevated N(H)
in the wind model. This is not seen (fig. 2). Instead, when the few Herbig Ae stars with
secure inclination estimates and good X-ray data (the real limiting factor here), instead of
a polar concentration or no dependence on inclination as predicted by Rorbrade & Schmitt
(2007), we find a peak near 40◦, corresponding to accretion funnels being in the line of sight
at 50◦ latitude.

We have extended this study to a pilot sample of classical T Tauri stars with N(H)
from the XEST survey (available from Vizier) and inclinations largely derived from HST
coronagraphic imagery. We confirm Gúedel et al. (2008)’s finding of elevated N(H) for
DG Tau A (fig. 3), and further find a general correlation between N(H) and increasing
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inclination. Interestingly the local peak in N(H) is also near i=40◦. The amplitude of the
effect is larger for the 1-2 Myr old classical T Tauri stars compared to the older (4<t<7
Myr) Herbig Ae sample. At this time we do not know whether this reflects evolution in
the gas to dust ratio in the disks, or the weaker magnetic fields typical of Herbig Ae stars
relative to classical T Tauri stars. Exploring such effects will require a larger sample of stars,
and extension of the inclination data to older stellar associations. In the meantime, the fact
that N(H) correlates with inclination for the T Tauri stars demonstrates that the bulk of the
absorption is due to the disk, and not to either remnant envelopes or foreground molecular
cloud material.

2.4 Scientific Objectives

While promising, the trend with inclination in both the Herbig Ae stars and the classical T
Tauri stars is based on very small numbers of stars which may or may not be typical. While
the Herbig Ae stars with good X-ray data are limited by the availability of X-ray data, the
same limit does not apply to classical T Tauri stars.

• We propose extending the dataset of classical T Tauri stars with securely determined
inclinations by combining inclination measures from coronagraphic imaging with in-
clinations derived from multi-epoch jet observations, and will compare these with in-
terferometric measurements (where available in the literature). One byproduct of this
exercise will be a direct measure of the equatorial rotation velocity for the stars which
is useful for angular momentum evolution studies. This exercise will also produce disk
size estimates based on the scattered light data, or the closest approach to the star
of any counterjet which can in turn further constrain disk models. The inclination
measures will also allow us to establish over what inclination range as a function of
stellar properties that ice (water and other volatile species) and silicate absorption are
found. YSO models assuming well-mixed gas and dust, and particle size distributions
typical of the ISM predict that absorption features begin to be detectable for inclina-
tions higher than 60◦ (Crapsi et al. 2008). Comparison of our pilot sample with silicate
emission spectra from Sptizer (Watson et al. 2009) suggests that the onset of routine
detection of silicate absorption occurs for i≥76◦. Such a restriction of the absorption
features to inclinations closer to edge-on provides additional evidence for grain growth
and settling toward the disk midplane, complementing disk photosphere radial surface
brightness profile data and SED fits (e.g. Furlan et al. 2005), but needs to be extended
to a larger sample of disks.

• We will uniformly treat the X-ray data, using target acquisition data (ACA for Chan-
dra, and OM for XMM-Newton (see Audard et al. 2007 for the XEST surevey) ob-
servations, if available with suitable filters) to estimate V at the epoch of the X-ray
observations, and produce an N(H) survey for the program stars. For the optically
visible stars, lacking good contemporary photometry we will make use of data from
the literature, other archives (e.g. IUE FES data), and more recent photometric mon-
itoring programs. In any case, we calculate AV for our stars using E(B-V) data from
the literature and the target acquistion data, and predict N(H) assuming a) ratios of
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Fig. 1:  X-ray CCD-resolution spectra of the accreting star HD 163296 (left after Günther & Schmitt

(2009) together with  a short, 10ks Chandra ACIS-S spectrum of  MWC 480 (right). Both stars are 

lightly reddened, and have FUV data from FUSE.  MWC 480 shows an unexpectedly large soft X-ray

absorption, a factor of between 9 and 40 times that expected from the selective extinction,  or the molecular 

hydrogen column seen by FUSE.  Chandra ACA data taken immediately before the ACIS-S observation

indicate that the star was at its average V level, suggesting that the absorption arises in a dust-free region. 

HD 104237

AB Aur

MWC 480

HD 163296

N(H) predicted from selective extinction

 N(H) from fit to  X-ray spectrum 

Fig. 2: When compared to other Herbig Ae stars

with high-quality X-ray observations from Chandra

or from XMM-Newton,  with secure inclination

measurements either from coronagraphy, jet data, 

or millimeter interferometry, N(H) for MWC 480 is 

elevated compared to other known jet-driving 

Herbig Ae stars HD 104237 (Grady et al. 2004)

and HD 163296 (Devine et al. 2000; Wassell et 

al. 2006), and to higher mass accretion rate systems

such as AB Aur.  This excludes a wind or jet-based

enhanced absorption as suggested by Rorbrade &

Schmitt (2007). 

DG Tau A

RU Lup

predicted N(H)

Fig. 3:  A preliminary comparison of the 

few T Tauri stars with N(H) in the literature

or on Vizier and secure disk inclination 

measures confirms Güdel et al. (2008)'s 

claim of elevated N(H) for DG Tau and 

further demonstrate for the stars shown here

that the bulk of the N(H) is from the disk

since envelope and foreground absorption 

would not be correlated with system 

inclination. A major goal of this proposal

is to determine whether DG Tau A and

MWC 480 are anomalies or are typical of

stars in their inclination range. 
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total to selective extinction typical of the diffuse ISM (R=3.1) and b) under conditions
more typical of molecular clouds (R=5) for all of the optically detected stars.

• For stars lacking optical detections we will use archival (or new, as needed) NIR or
mid-IR spectra to estimate the equivalent AV following Terada et al. (2007).

• Using fits to the IR SED we will estimate the circumstellar disk and any remnant
envelope contribution to the extinction. This step will make use of either custom-fits
to the SED using the Whitney et al. (2003, 2004a,b) Monte Carlo Radiative Transfer
code or will use pre-computed libraries of models calculated with the same code (see
Robitaille et al. 2007) where the model parameters are a good fit to particular targets.

• Next we will identify stars with excess N(H) for the line-of-sight extinction, and com-
pare their distribution in inclination, stellar mass, system age, and whether or not
they have independently been classified as a transitional disk. The observed excess
distribution as a function of inclination will be compared with 3 models: absorption in
uniform wind (no inclination dependence for sight lines with minimal disk extinction),
absorption concentrated at latitudes where the line of sight to the star preferentially
passes through the jet (low inclination for known jet systems), and the inclination de-
pendence expected for accretion funnels associated with inclined dipole magnetic field
components.

2.5 Technical Plan

2.5.1 Data Availability

To test the photoelectric absorption models we need a) a sample of coeval T Tauri stars
which are roughly equally distributed by spectral type (F-G, K, M), and spanning the full
inclination range, and b) select groups of older stars. After more than a decade of HST, jet,
and X-ray observations, together with the wealth of data provided by Spitzer, inclination
estimates are either available, or can be rather easily derived for at least 60 classical T Tauri
and currently for an additional ∼10 transitional disk systems. As a result of large X-ray
and IR surveys of star forming regions similar to the XMM Extended Survey of Taurus
(XEST, Güdel et al. 2007) and its IR counterpart, the majority of these stars have both
good X-ray data and IR data needed to constrain the SED. We therefore have the critical
mass of data needed to test the models of Güdel et al. (2008) and Rorbrade & Schmitt
(2007). Extension to other star-forming regions is feasible, but will depend upon the pace of
new inclination determinations. However, at this time we have identified ∼60 T Tauri stars
and an additional ∼10 transitional disk systems which have data from which inclination
measures can be derived. ≈3/4 of these have archival X-ray data in hand which can be used
to derive N(H). Since both XMM-Newton and Chandra continue to operate, we expect the
X-ray archival data to continue to grow. New inclination measures are also expected, both
as a result of reprocessing efforts and improvements in data reduction for HST archival data
(see §2.5.4 below) and as a result of new ground-based coronagraphic surveys such as the
Subaru Strategic Exploration of Exoplanets and Disk Systems (SEEDS), which should begin
to produce data in 2009.
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F-G               K               M               YSO

Fig. 4: Distribution of program
stars with known inclinations as
a function of spectral type and 
in inclination bins (0-30 degrees,
blue,  30-60 degrees, green, 60-90
degrees, orange).  

Fig. 5: Improvement in NICMOS
coronagraphic data reduction using both
recently and uniformly reprocessed data
and color and artifact-match PSF template
stars is illustrated for the mid-F debris
disk HD 181327.  Data for two visits
with the orientation on the sky rolled by 
30 degrees are shown left to right. 
 The top row shows the discovery
imagery (Schneider et al. 2006), 
while the lower  roll shows the
reprocessed data.  With improvements
in data handling,  an order of magnitude
improvment in sensitivity is realized,  
a level of improvement historically 
realized for HST  with  the 
installation of new instrumentation. The 
ring now clearlyhas a crisp inner edge 
and steep radial surface brightness drop off to larger radii. The NICMOS 0.3" radius coronagraphic
obscuration  is indicated by the red circle in each frame. 

Discovery Imagery

Newly Reprocessed Data



Table 1: Available Data
CTT Stars with Existing Inclination Measurements 46
HAe Stars with Existing Inclination Measurements 15
Transitional Disks with Existing Inclination Measurements ∼10
Stars with Data for which Inclinations can be Determined 70
CTT Stars with Inclinations Needing X-ray Data 10
HAe Stars with Inclinations Needing X-ray Data 5
CTT Stars with X-ray Data needing inclinations 10
Transitional Disks Needing higher S/N X-ray Data

At present, there are at least 46 T Tauri stars with inclination data, primarily from Tau-
Aur and ρ Oph. The distribution of these stars by spectral type is shown in fig. 4. The
roughly equal distribution in 4 bins (F-G, K, M, and YSO) means that we can begin to look
for systematic differences as a function of stellar mass in roughly co-eval populations, and
can compare the behavior with the Herbig Ae stars. Coarser spectral type binning is now
feasible to explore systematic differences with inclination, or mass loss rate, and will become
more statistically significant as the sample with measured inclinations grows.

2.5.2 Need for New Observations

Not all of the current set of targets have X-ray data, inclination measures, or optical/NIR
measures of extinction. We will therefore propose new X-ray observations (XMM observation
analysis will be costed to this effort), as well as second-epoch jet observations using the
Goddard Fabry-Perot at Apache Point Observatory. For stars lacking good photometric
coverage we will seek additional optical/NIR photometry to be able to place the X-ray
data in context. We will also propose for additional 1-5µm moderate resolution spectral
observations (e.g. IRTF/SpeX) extend the spectral coverage provided by Sptizer IRS data
to include ice features. SpeX data can be obtained with remote observing, minimizing travel
costs.

2.5.3 X-ray Data Analysis

We are requesting funding for analysis of the X-ray data not included in the XEST release,
using the same models to produce a homogeneous catalog of N(H) data for both the archival
data and any new XMM observations that either become available during the study period,
or which we obtain as the result of dedicated proposals. XMM-Newton data reduction will
follow Güdel et al. (2007), while Chandra data reduction will make use of the current version
of CIAO and use standard analysis threads. Spectral modeling will be carried out using the
XSPEC package (Arnaud 1996) using vapec and the photoelectric absorption model wabs
which uses absorption cross-sections by Morrison & McCammon (1983) to ensure uniform
handling and minimize the need for re-reduction of the XEST sources.

Both XMM-Newton and Chandra have on-board optical monitoring capabilites. For
Chandra the Aspect Camera Assembly photometry for the science target, either acquired
during the X-ray observation, or immediately prior as part of target acquisition verification
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Fig. 7:  Assembly of an IR SED typically

requires combining data from several

different NASA or ESA missions with ground-based

observations at different wavelengths. Shown is 

an example for the Herbig F star SAO 206462

(Grady et al. 2009) with the data sources indicated. 

For SED assembly we anticipate literature searches,

archival data analysis (Spitzer, possibly ISO) in 

tandem with use of new observations (IRTF/SpeX)

and possibly Herschel data as available.  

Fig. 5: Example of Jet Detections 

in HST raw and PSF-subtracted 

data. The jet of DL Tau is marginally 

detectedin a WFPC2 direct image 

(upper left), and is clearer in 

STIS raw coronagraphic imagery 

(upper right). Thejet visibility is 

improved by PSF subtraction for

 both instruments (lower panel), 

while side-by-side comparison

of the data reveals the jet proper 

motion. The counterjet is detected 

in the STIS data and can be followed

at larger distance from the star in 

GFP imagery (fig. 6).  The jet data 

for DL Tau, independent of the disk 

detection by STIS is sufficient to 

constrain the inclination of this 

system to 38 degrees. 

Fig. 6:  Velocity data for  jets can be obtained either from conventional long-slit spectroscopy or velocity 

scans with GFP., here shown for DL Tau in [S II].  
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will be used in tandem with B-V data in the literature or from SIMBAD to estimate the
V magnitude at the epoch of the X-ray observation. XMM-Newton has an Optical Monitor
(OM) with user-specified filters. Where appropriate, we will make use of these data, and
will also explore the availability of target acquisition data to derive V. Where these are
not availabie, we will make use of data from the literature, going back, where feasible to
the photometry rather than relying on tablulated AV data of uncertain pedigree. For some
targets, we can use IUE FES magnitudes, again converted to V, or Hipparcos data to establish
a representative range of V to place the light level at the epoch of the X-ray observations into
context. Some of the transitional disks are the subject of current photometric monitoring
programs, which will be available to us at no cost to this effort.

2.5.4 Reanalysis of HST Coronagraphic Data

The start of this project will coincide with the first data delivery to the MAST of uniformly
reprocessed NICMOS coronagraphic data (higher photometric accuracy and cosmetic effici-
acy than is now in the archive) from the HST Legacy Archive program Legacy Archive PSF
Library and Circumstellar Environments Investigation (LAPLACE HST- AR-11279). That
program will create a high-quality and systematically re-processed PSF Library (with pedi-
gree, photometry, astrometry and other information), and will reprocess all NICMOS coro-
nagraphic data through cycle 15 (mid-2008) at the visit and visit-combined level to enable
archival research programs using all previously approved NICMOS GO/CAL/engineering
programs. Using both the reprocessed data, and coronagraphic observations of PSF tem-
plate stars which are matched in the presence (or absence) of NICMOS artifacts, have similar
HST focus properties, have the cold mask at similar locations in the imagery, and where the
target star and template differ in J-H or H-K by ≤0.2 results in an order of magnitude
improvement in the straylight background (fig. 5) at r≤1.7”. This is comparable to the im-
provement historically achieved for HST by the installation of a new coronagraph, and based
on our experience with coronagraphic imagery, may result in a doubling of the scattered-light
disk detections from the current archival pool (e.g. Grady et al. 2007, Grady et al. 2009a).
The timeline for the LAPLACE reprocessing effort is compatible with our needs, since some
data will be in the archive in the summer of 2009, while the bulk of the reprocessing is
expected to be completed by mid-2010, only 6 months into our proposed study. We will
explore a reanalysis of the ACS and STIS coronagraphic imagery, but fewer candidate PSFs
are available for these instruments, which may limit our ability to make new disk detections.

As part of this effort we will also explore the suitability of the Locally Optimized Com-
bination of Images (LOCI) algorithm (Lafreniére et al. 2009) used to detect planets in HR
8799, for the disk non-detections. We will use LOCI to identify the closest point sources
near our PMS stars, and where multi-epoch HST imagery is available determine whether
they are co-moving with the target or are background objects. An abrupt drop in the local
density of background objects in the vicinity of the target can then be used to place upper
limits on the size of the disk, for use in the SED modeling. Any wide, co-moving objects
that result from this effort will be analyzed separately.
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2.5.5 Analysis of HST Jet Observations

Multi-epoch jet observations can be used to constrain the disk inclination, with the simple
assumption that jets launch orthogonal to the circumstellar disk, which can be tested from
the disk detections in our sample. Bipolar jet detections, and in particular, the counter-jet
can be used to place a firm upper bound on the size of the disk along the disk semi-minor
axis. HST has observed a number of T Tauri stars as part of jet studies, and while the jets
have been studied in detail, the data have typically not been PSF subtracted and analyzed
for the disk properties. The analysis of the direct imagery includes subtraction of a suitably
matched, registered, and scaled PSF template observation in a bandpass (F606W or F675W
for WFPC2) which contains strong jet emission lines (fig. 6). The principal use of the HST
jet imagery will be to establish jet proper motion. We will augment these data with HST
spectroscopy and/or spectral imagery.

2.5.6 Goddard Fabry-Perot Narrow-band Imaging of Jets

The Goddard Fabry-Perot interferometer, based at the Apache Point Observatory 3.5m tele-
scope combines a larger field of view (3.7’ in diameter) with the ability image with a variety
of filters ranging from broad-band (UBVRI), medium-band blocking filters (FWHM 115 Å)
and Fabry-Perot etalons with resolutions ranging from 15 Ådown to 3.25 Åwith and without
a coronagraph in the line of sight. This instrument can achieve emission-line contrast gains
relative to HST high contrast imagery of anywhere between a factor of 600 to 3000, enabling
detection of any jets which are extended more than a few arcseconds from their star. As
part of ongoing observations begun to support the HST coronagraphic imaging programs,
we have data for some of the program T Tauri stars at 1 or more epochs, and the capability
to obtain current epoch data for jets with only literature data, or which are newly identi-
fied from the analysis of the archival HST data. Due to the lower spatial resolution of the
GFP (natural-seeing imagery) compared to HST, second epoch imagery needed to measure
proper motions of knots in microjets or more discrete HH-knots typically needs to follow
(ground-based) discovery imagery by 5-10 years. For this study we will make use of our
existing archive, with new observations planned only for 2nd epoch imagery (fig. 7).

2.5.7 Spectral Energy Distribution Assembly

The spectral energy distributions of the target objects will be assembled from a wide va-
riety of sources. These will include, but are not limited to: ultraviolet spectra form the
International Ultraviolet Explorer (IUE), low-resolution PHT-40 spectrophotometry form
the Infrared Space Observatory (ISO), infrared spectroscopy from the Infrared Spectrograph
(IRS) of the Spitzer Space Telescope (SST), broad-band infrared photometry from the In-
fraRed Astronomical Satellite (IRAS), 2MASS photometry, available ground-based optical
and infrared photometry , and any available submillimeter and millimeter observations, in-
cluding data from Herschel and/or SOFIA as they become available. An example of an SED
assembled for the pre-transitional disk system SAO 206462 (Grady et al. 2009a) is shown
in Fig. 7. Because these systems are variable, a proper appraisal of the material to be used
in this study will be required. For the purposes of simply illustrating the actual range of
flux densities exhibited by the stars and their disk emission, multiple epochs of data will be
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shown. However, the SED material to be included in the modeling will have to be selected
carefully, especially as they will (except on rare occasions) rarely be nearly simultaneous.

2.5.8 Monte-Carlo Radiative Transfer Modeling of Disks

Fitting of the IR spectral energy distribution in tandem with constraints on disk size and
inclination provides powerful insight into disk structure, predicted color, and the degree of
grain growth and settling toward the disk mid-plane (Grady et al. 2007; 2009a). A number
of Monte-Carlo Radiative transfer codes are in use in the astronomical community. Two
approaches toward this modeling are in use: a) computation of a suite of generic models
at a number of different inclinations (Robitaille et al. 2007), and b) custom computation
of models when there are no suitable library models available. The former approach works
best when there is at least a reasonable match between the disk parameters and the library
models, and may work best for the youngest members of our sample. Our experience with
older disks, where significant settling has occurred, is that custom computation of models
works best (Grady et al. 2007; 2009a). To ensure that we can exploit the pre-computed
models, we propose using the Whitney et al. (2003a,b, 2004) MCRT code used by Robitaille
and by co-I Sitko in our previous studies. This process, however, is resource intensive and
will be carried out only for those disks where we need to unambiguously separate the disk
and/or envelope contribution to the line-of-sight extinction from foreground material.

2.5.9 Follow-On Science Enabled By This Effort

A large, homogeneously processed multi-wavelength dataset of the kind we propose to work
with will enable many other science investigations. First, knowledge of the system inclination
plus v sin i data will allow us to know which sample members are rapid rotators, and to track
the angular momentum evolution of stars from the age of Tau-Aur through to the epoch of
the debris disks. This effort will form the PhD thesis of Thompson LeBlanc (Vanderbilt U.)
who is supported by a NASA Graduate Student Research Program fellowship beginning in
September 09 at no cost to this effort. We anticipate that he will expand the modeling effort
led by co-I Sitko to a larger sample of our program stars, complementing our proposed work.

As part of the SED assembly effort we will be acquiring IRTF/SpeX and BASS data
covering 0.8-13µm which can be used to search for the onset of detectable ice (water and
other species) and silicate absorption as a function of system inclination, disk size and local
stellar environment, following Terada et al. (2007).

Further, the majority of our program stars are planned Herschel or SEEDS targets. The
inclination data we assemble in this effort will faciliate interpretation of the Herschel gas
data, any follow-on SOFIA observations (such as an HD survey). The NICMOS scattered-
light imagery, especially at 1.1µm will complement the SEEDS H-band data and expand
the suite of disks for which disk color data are available, which ultimately will feed in to
constraining the time and/or UV radiation dose required to redden the outer disk, and to
other disk chemistry studies.
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2.6 Why an ADA proposal and Why Now?

All of the component datasets, analysis techniques, and modeling tools needed for this study
are currently available, enabling us to carry out the goals of our study. However, a good
analysis effort should make predictions which can be tested with follow-on observations. Ex-
ploiting this predictive power requires that the study results are available while we continue
to have access to the X-ray, and high-contrast imaging from space. Both Chandra and XMM
continue to operate. After SM4, at least some of HSTs coronagraphs are expected to be
operational, while ground-based high contrast imaging surveys are beginning on 8-10m tele-
scopes, and will produce a large volume of disk inclinations during our study period. Thus
the time is right, not only to carry out a large-scale data mining effort of the kind proposed
here, but to obtain the follow-on observations.

This study will also provide constraints needed to model data from new missions. Many
of our program stars are targets on Herschel Open Time Key Projects, while other stars are
natural targets for detailed study by SOFIA and ALMA. A uniform X-ray library for many
of these stars is essential for chemical modeling of the disks, while the geometrical insight
this study can provide in terms of what portions of the disk are routinely illuminated as a
function of wavelength is needed not only to account for the diversity in disk imagery, but
also to understand typical conditions in disks both prior to the formation of Jovian-mass
planets, during their formation, and during the period of central disk clearing. Such insight
is critical in optimizing the scientific return from the remainder of the HST and Chandra
missions, and also for planning for JWST. This is an intrinsically multi-wavelength project
which goes well beyond the scope of studies traditionally funded through archival studies
associated with NASA’s Great Observatories, but which has the potential to provide powerful
insight into the data obtained with Chandra, HST, or with Spitzer, and with new facilities
such as SOFIA or Herschel. As a result, we are requesting support through the Astrophysics
Data Analysis opportunity.

2.7 Work Plan

2.7.1 The Team

Our team members have collaborated previously, and have extensive experience both in the
analysis of the individual components of our study, and also in multi-wavelength studies
of particular objects. Grady as PI will provide overall project management, is responsible
for getting things written up, and will take the lead with the re-analysis of the HST direct
imagery, but will also be actively involved in the coronagraphic analysis, the analysis of any
new Goddard Fabry-Perot data, and the X-ray data. Hamaguchi, is an experienced X-ray
astronomer and will lead the X-ray reanalysys. Schneider is expert in coronagraphic data
analysis, and is PI of the LAPLACE NICMOS data reprocessing effort: he will lead the
coronagraphic data analysis. Woodgate is PI of the Goddard Fabry-Perot, and will lead the
acquisition of 2nd epoch jet data. Sitko is not only expert in IR observing, but has been
actively involved in study of transitional disks which are variable in the near to mid-IR. He
will lead the SED assembly and the WMCRT modeling of the disks.
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2.7.2 Schedule

We will begin our work in this area prior to the start of funding for this studyl by focussing on
the stars with known inclinations and literature N(H), as shown in fig. 3, under Woodgate’s
current APRA funding. Having identified stars which are missing X-ray data, but which
have secure inclination measures (e.g. DL Tau), we will propose for XMM-Newton observa-
tions at the first available opportunity, and then follow with the other stars needing X-ray
data with Chandra and/or XMM-Newton. We will also begin to acquire the 2nd epoch jet
data with GFP in the late 2009, under our existing GFP APRA funding, at no cost to this
effort. We will propose for IRTF/SpeX observations beginning in mid-2009.

Year 1: FY10: In this year we will begin the re-analysis effort, starting with stars
which have all of the suitable archival data, but which are missing either measured N(H) or
inclination data. SED Assembly and modeling will begin for systems like DG Tau A which
show elevated N(H) (fig. 3). Re-analysis of the NICMOS data will be coordinated with
LAPLACE data deliveries to MAST. If we are successful in acquiring X-ray data for stars
with good inclinations in the 30-50◦ range, we will be able to establish whether DG Tau A
and MWC 480 are representative, and to test the model predictions of Güdel et al. 2008
and Rorbrade & Schmitt (2007).

Year 2: FY 11: We will continue the effort begun in FY10, folding in stars with new
X-ray or inclination data as they become available, and will continue to acquire the 2nd
epoch jet data with GFP. We expect that the bulk of the NICMOS data reanalysis will be
complete during this year.

Year 3: FY12: By FY12 we anticipate that surveys like SEEDS will have produced a
large sample of inclination data which can be directly combined with the N(H) measures from
the X-ray data. The focus for the NICMOS work will shift to establishing whether features
of interest in the SEEDs data can be recovered in the earlier NICMOS observations. We
will continue to fill in gaps in our data coverage. and will start our analysis of the full sample.

Year 4: FY 13 In the final year of the project we will focus on trends in N(H) as
a function of inclination, age, stellar properties and the degree of central clearing of the
disk. In this year we will explore whether there is a change in the star-disk coupling for the
transitional disks compared to the jet-driving systems and whether this change follows or is
contemporary with the earliest indication of Jovian-mass planets resident in the disks (as
determined from other large surveys such as SEEDS).

Dissemination Plans: We plan a phased publication effort with at least one paper
exploring the origin of the elevated N(H), one focussing on differences and similarities in
behavior of accretion activity as a function of spectral type in a coeval population, and then
an evolutionary study including the transitional disks. We plan to make the N(H) data
available via Vizier. Many of our targets are in common with the Herschel Open Time Key
Project GASPS (Grady is a co-I). GASPS has planned a VO-compliant archive both of the
Hershel data and ancillary data. We will make our full dataset available via this portal.
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